
WWW.UHASSELT.BE/DSI

Data Provenance for SHACL
Thomas Delva (UGent),

Anastasia Dimou (KULeuven),

Maxime Jakubowski &
Jan Van den Bussche (UHasselt)

SHACL
• Shapes Constraint Language
• Constraint language for RDF graphs
• Conformance checking

:BookShape
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.

:BookShape sh:targetClass :Book.

≥! 𝑡𝑦𝑝𝑒. 𝐵𝑜𝑜𝑘 ⊆ ≥! 𝑡𝑖𝑡𝑙𝑒. ⊤

Shapes
Let	𝑁, 𝑃 and	𝑆 be	disjoint	universes	of	node	names,	property	names	and	shape	
names.

The language 𝐿

𝜙 ≔ ⊤ ∣ 𝑐 ∣ 𝑠 ∣ 𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 ∣ ¬𝜙 ∣ ∀𝐸. 𝜙 ∣ ≥"𝐸. 𝜙

∣ 𝑒𝑞 𝐸, 𝑝 ∣ 𝑑𝑖𝑠𝑗 𝐸, 𝑝 ∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄

𝐸 ≔ 𝑝 ∣ 𝑝# ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗ ∣ 𝐸?

where	𝑐 ∈ 𝑁,	𝑝 ∈ 𝑃,	𝑠 ∈ 𝑆 and	𝑄 ⊆ 𝑃

𝐸 are regular path queries with inverse and zero-or-one paths

Example shapes
• “Through a path of friend edges, the node can reach node d”

• 𝜙 ≡ ≥! 𝑓𝑟𝑖𝑒𝑛𝑑∗. {𝑑}
• b, c, and d satisfy 𝜙 in 𝐺

• “Nodes where friendship is mutual”
• 𝜙 ≡ 𝑒𝑞 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑓𝑟𝑖𝑒𝑛𝑑#

• c and d satisfy𝜙 in 𝐺

• “Nodes who have at least one colleague who is also a friend”
• 𝜙 ≡ ¬𝑑𝑖𝑠𝑗(𝑓𝑟𝑖𝑒𝑛𝑑, 𝑐𝑜𝑙𝑙𝑒𝑎𝑔𝑢𝑒)
• b and c satisfy𝜙 in G

Shape schemas
The main task is to check whether a graph conforms to some constraints, not single nodes.

A shape definition is a statement of the form: 𝑠 ← 𝜙

A shape schema consists of shape definitions and inclusion statements

𝜙$ ⊆ 𝜙%

SHACL allows only the following target shapes 𝜙$:

• Node targets: {𝑐}
• Class-based targets: ≥! subclassOf ∗. ≥! type. {𝑐}
• Objects-of targets: ≥! 𝑝#. ⊤
• Subjects-of targets: ≥! 𝑝. ⊤

We show that real SHACL can be translated to our formalism

Provenance & Neighborhoods

• Our goal: Provide provenance of a shape schema

• Provide a subgraph of the data that is relevant

We define the neighborhood: 𝐵(𝐺, 𝑣, 𝜙)
• 𝐺 a graph
• 𝑣 a node
• 𝜙 a shape

What part of 𝐺 is relevant to decide that 𝑣 satisfies 𝜙 in 𝐺?

Neighborhood definition
Negation is handled by considering the shapes in negation normal form

Simplified shapes (no path expressions):

𝜙 ≔ ⊤ ∣ 𝑐 ∣ 𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 ∣ ∀𝑝. 𝜙 ∣ ≥!𝑝. 𝜙 ∣ 𝑒𝑞 𝑝, 𝑞 ∣ 𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄

∣ ⊥ ∣ ≤! 𝑝. 𝜙 ∣ ¬𝑒𝑞 𝑝, 𝑞 ∣ ¬𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝑄)

Neighborhood of a node 𝑣 according to a shape 𝜙 in graph 𝐺: 𝐵 𝐺, 𝑣, 𝜙

• When the node 𝑣 does not satisfy 𝜙 in 𝐺, the neighborhood is empty

• Shapes that do not use any properties, also have an empty neighborhood

Conjunction and disjunction
… are defined as the union of neighborhoods

• 𝐵 𝐺, 𝑣, 𝝓𝟏 ∧ 𝝓𝟐 = 𝐵 𝐺, 𝑣, 𝜙M ∪ 𝐵 𝐺, 𝑣, 𝜙N

• 𝐵 𝐺, 𝑣, 𝝓𝟏 ∨ 𝝓𝟐 = 𝐵 𝐺, 𝑣, 𝜙M ∪ 𝐵 𝐺, 𝑣, 𝜙N

Equality: 𝒆𝒒(𝒑, 𝒒)

𝑣 𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

Nonequality: ¬𝒆𝒒(𝒑, 𝒒)

𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣

Disjointness: 𝒅𝒊𝒔𝒋(𝒑, 𝒒)

• Empty neighborhood satisfies the disjointness shape

• Relaxing the definition to add 𝑝 and 𝑞 edges does not violate the

correctness properties

Nondisjointness: ¬𝒅𝒊𝒔𝒋(𝒑, 𝒒)

𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣

Closedness: 𝒄𝒍𝒐𝒔𝒆𝒅(𝑸)

• Empty neighborhood satisfies the closedness shape

• Relaxing the definition to add all edges from 𝑄 does not violate the

correctness properties

Nonclosure: ¬𝒄𝒍𝒐𝒔𝒆𝒅 {𝒑}

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣 𝑣

Quantifiers: ∀𝒑.𝝍

𝑣

𝐺

𝑣

𝐵(𝐺, 𝑣, 𝜙)

Quantifiers: ≥𝟏 𝒑.𝝍

𝑣

𝐺

𝑣

𝐵(𝐺, 𝑣, 𝜙)

Quantifiers: ≤𝟏 𝒑.𝝍

𝑣 𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

Example

p1 Paper
Bob

Anne

Student

Professor

type author

type

𝜙 ≡ ≥# 𝑎𝑢𝑡ℎ𝑜𝑟. ⊤ ∧ ≤# 𝑎𝑢𝑡ℎ𝑜𝑟.¬≥# 𝑡𝑦𝑝𝑒. {𝑆𝑡𝑢𝑑𝑒𝑛𝑡}

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

Example

p1 Paper
Bob

Anne

Student

Professor

type author

type

𝜙 ≡ ≥# 𝑎𝑢𝑡ℎ𝑜𝑟. ⊤ ∧ ≤# 𝑎𝑢𝑡ℎ𝑜𝑟. ≤$ 𝑡𝑦𝑝𝑒. {𝑆𝑡𝑢𝑑𝑒𝑛𝑡}

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

Example

p1 Paper
Bob

Anne

Student

Professor

type author

type

𝜙 ≡ ≥# 𝑎𝑢𝑡ℎ𝑜𝑟. ⊤ ∧ ≤# 𝑎𝑢𝑡ℎ𝑜𝑟. ≤$ 𝑡𝑦𝑝𝑒. {𝑆𝑡𝑢𝑑𝑒𝑛𝑡}

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

Example

p1 Paper
Bob

Anne

Student

Professor

type author

type

𝜙 ≡ ≥# 𝑎𝑢𝑡ℎ𝑜𝑟. ⊤ ∧ ≤# 𝑎𝑢𝑡ℎ𝑜𝑟. ≤$ 𝑡𝑦𝑝𝑒. {𝑆𝑡𝑢𝑑𝑒𝑛𝑡}

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

Shape Fragments
… as an application of neighborhoods.

We define Frag 𝑮, 𝑺 as the union of all neighborhoods of nodes satisfying the
shapes from 𝑆 in 𝐺.

Let 𝐻 be a shape schema, we define:

Frag 𝑮,𝑯 ≔ Frag(𝐺, 𝑆)

where 𝑆 = {𝜙 ∧ 𝜏 ∣ 𝜏 is the target of 𝜙 in𝐻}

Correctness properties

We have established:

Sufficiency Theorem. If a node 𝑣 satisfies a shape 𝜙 in a graph 𝐺, then:

𝑣 also satisfies 𝜙 in 𝐺′ for any subgraph 𝐺! ⊆ 𝐺 s.t. 𝐵 𝐺, 𝑣, 𝜙 ⊆ 𝐺!.

Conformance Theorem. If a graph 𝐺 satisfies a schema 𝐻, then:
Frag(𝐺, 𝐻) also conforms to 𝐻.

Tools

• PySHACL implementation

• Translation to SPARQL

• Conformance queries

• Neighborhood queries

https://github.com/shape-fragments

PySHACL overhead

0

5

10

15

20

25

30

1.5M 2.5M 3.5M 4.5M

Ov
er

he
ad

 p
er

ce
nt

ag
e

• 56 shapes
• 1.5 → 4.5M triples

• Average: 10%
• Average ≥ 1s: 15,6%

SPARQL query run time

0

5

10

15

20

25

30

35

40

45

50

1.5M 2.5M 3.5M 4.5M

Ti
m

e
in

 se
co

nd
s

• 13 shapes
• 1.5 → 4.5M triples

Paths
SHACL supports (regular) path expressions:

𝐸 ≔ 𝑝 ∣ 𝑝O ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗ ∣ 𝐸?

The neighborhood collects all triples on a path.

Example:
≥M 𝑎O/𝑎/𝑎O/𝑎/𝑎O/𝑎. {MYV}

→ retrieves all authors of distance 3 from MYV , and all
triples on that path.

Path shape with SPARQL
• Executed on DBLP RDF data

• Run on two SPARQL engines:

• Jena ARQ (dotted)

• GraphDB (dashed)

Concluding remarks
• There are many different ‘reasonable’ ways to define subgraphs from a shape

• Different definitions have different properties

• Sufficiency is a well-known property

• What properties can a subgraph have?

… e.g., can we define subgraphs that are minimally sufficient and unique?

• What do we do with subinstance provenance in presence of negation?

