Data Provenance for SHACL

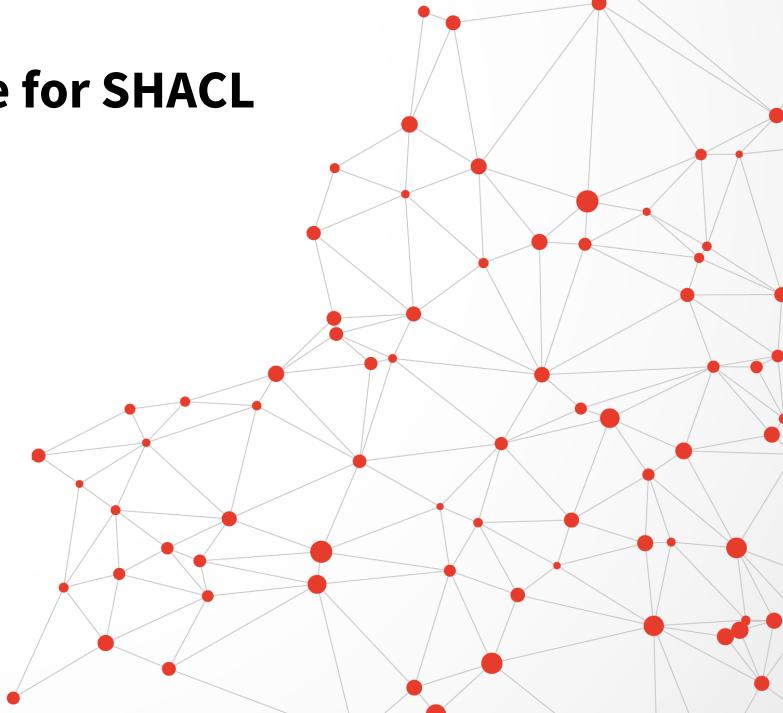
Thomas Delva (UGent),

Anastasia Dimou (KULeuven),

Maxime Jakubowski &

Jan Van den Bussche (UHasselt)

WWW.UHASSELT.BE/DSI



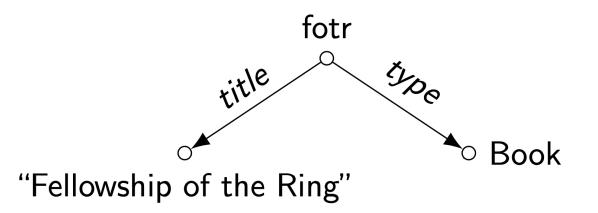
SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

:BookShape a sh:PropertyShape; sh:path :title; sh:minCount 1.

:BookShape sh:targetClass :Book.

 $\geq_1 type.Book \subseteq \geq_1 title.\top$



Shapes

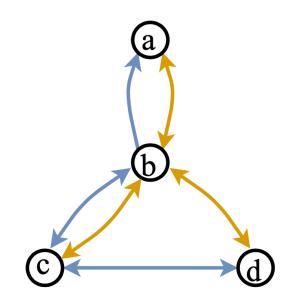
Let *N*, *P* and *S* be disjoint universes of node names, property names and shape names.

```
\phi \coloneqq \top | \{c\} | s | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E. \phi | \ge_n E. \phi| eq(E,p) | disj(E,p) | closed(Q)E \coloneqq p | p^- | E \cup E | E/E | E^* | E?where c \in N, p \in P, s \in S and Q \subseteq P
```

E are regular path queries with inverse and zero-or-one paths

Example shapes

- "Through a path of **friend** edges, the node can reach node d"
 - $\phi \equiv \geq_1 friend^*.\{d\}$
 - b, c, and d satisfy ϕ in G
- "Nodes where **friend**ship is mutual"
 - $\phi \equiv eq(friend, friend^{-})$
 - c and d satisfy ϕ in G
- "Nodes who have at least one **colleague** who is also a **friend**"
 - $\phi \equiv \neg disj(friend, colleague)$
 - b and c satisfy ϕ in G



Shape schemas

The main task is to check whether a **graph** conforms to some constraints, not single nodes.

A shape definition is a statement of the form: $s \leftarrow \phi$

A shape schema consists of shape definitions and inclusion statements

 $\{C\}$

 $\geq_1 p^-$.T

 $\geq_1 p$. T

 $\phi_t \subseteq \phi_s$

SHACL allows only the following target shapes ϕ_t :

- Node targets:
- Class-based targets:
- \geq_1 subclassOf^{*}. \geq_1 type. {c}
- Objects-of targets:
- Subjects-of targets:

Provenance & Neighborhoods

- Our goal: Provide **provenance** of a shape schema
- Provide a **subgraph** of the data that is relevant

We define the **neighborhood**: $B(G, v, \phi)$

- *G* a graph
- v a node
- ϕ a shape

What part of G is relevant to decide that v satisfies ϕ in G?

Neighborhood definition

Negation is handled by considering the shapes in **negation normal form**

Simplified shapes (no path expressions):

 $\phi \coloneqq \top | \{c\} | \phi \land \phi | \phi \lor \phi | \forall p. \phi | \ge_n p. \phi | eq(p,q) | disj(p,q) | closed(Q)$

 $|\perp| \leq_n p.\phi | \neg eq(p,q) | \neg disj(p,q) | \neg closed(Q)$

Neighborhood of a node v according to a shape ϕ in graph G: $B(G, v, \phi)$

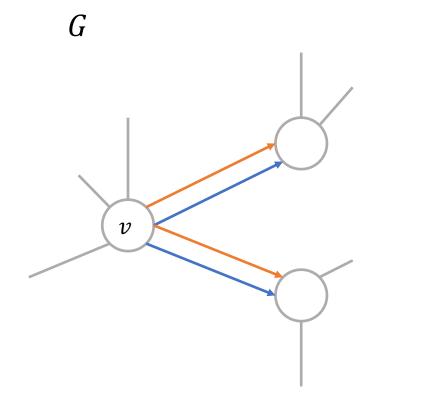
- When the node v does **not** satisfy ϕ in G, the neighborhood is empty
- Shapes that do not use any properties, also have an empty neighborhood

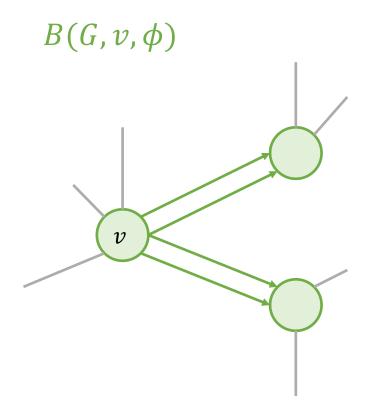
Conjunction and disjunction

... are defined as the union of neighborhoods

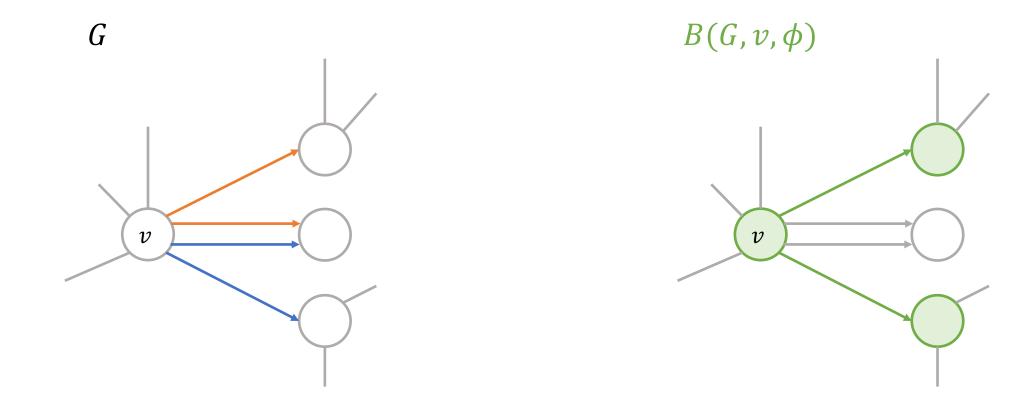
- $B(G, v, \boldsymbol{\phi}_1 \land \boldsymbol{\phi}_2) = B(G, v, \boldsymbol{\phi}_1) \cup B(G, v, \boldsymbol{\phi}_2)$
- $B(G, v, \boldsymbol{\phi}_1 \lor \boldsymbol{\phi}_2) = B(G, v, \boldsymbol{\phi}_1) \cup B(G, v, \boldsymbol{\phi}_2)$

Equality: eq(p, q)





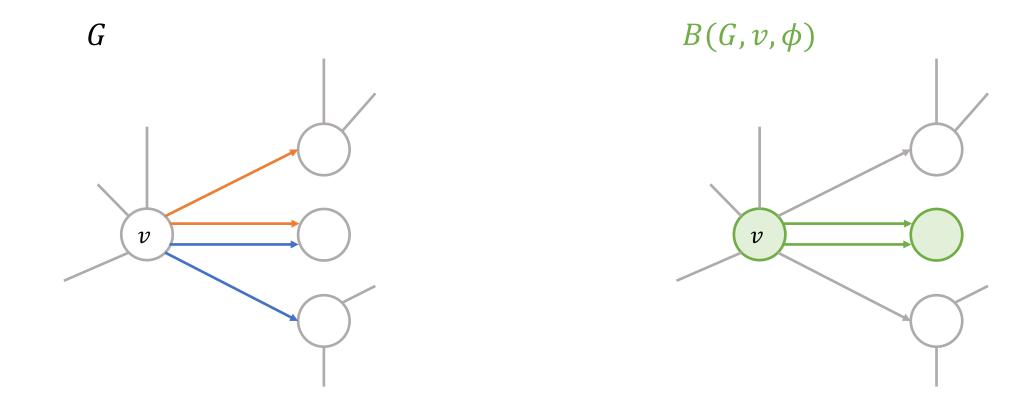
Nonequality: $\neg eq(p, q)$



Disjointness: disj(p,q)

- Empty neighborhood satisfies the disjointness shape
- Relaxing the definition to add p and q edges does not violate the correctness properties

Nondisjointness: ¬*disj*(*p*, *q*)

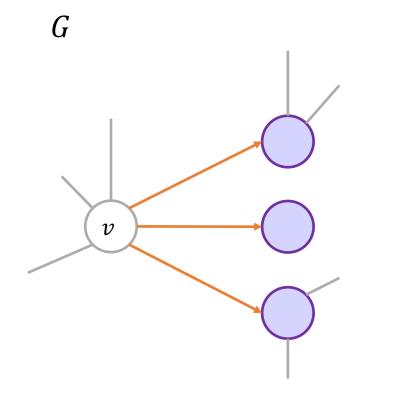


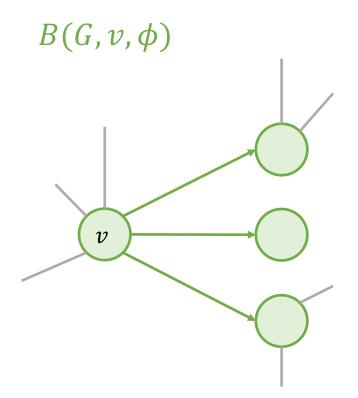
Closedness: closed(Q)

- Empty neighborhood satisfies the closedness shape
- Relaxing the definition to add all edges from *Q* does not violate the correctness properties

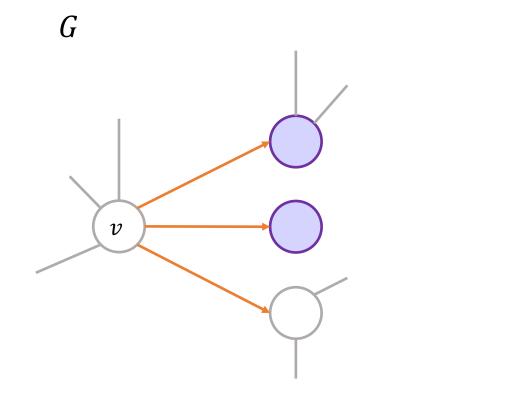
Nonclosure: ¬*closed*({*p*})

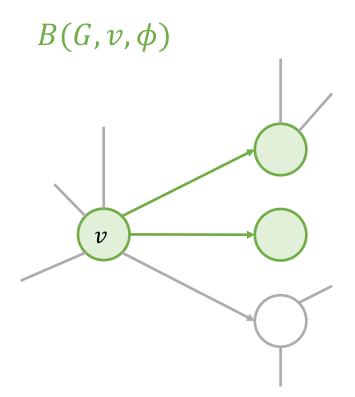
Quantifiers: $\forall p. \psi$



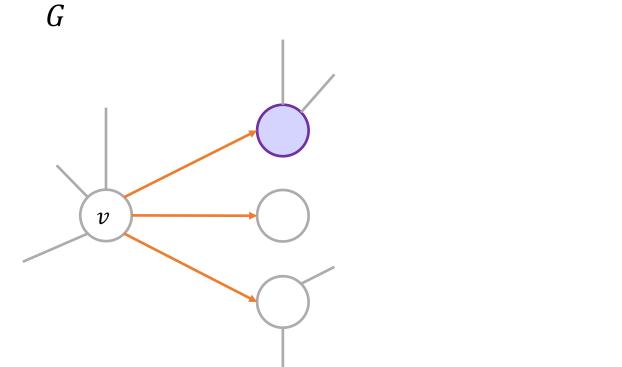


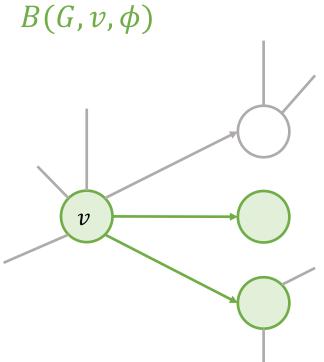
Quantifiers: $\geq_1 p.\psi$

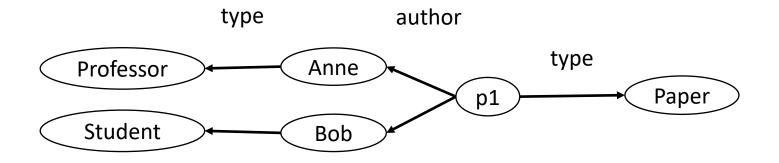




Quantifiers: $\leq_1 p.\psi$



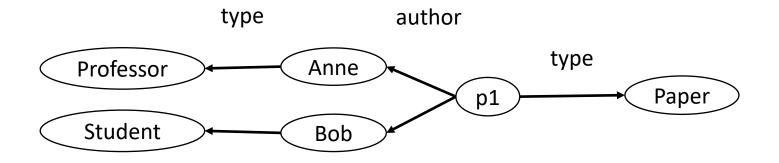




 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \neg \geq_1 type. \{Student\}$

"The node has an author and at most one author is not a student."

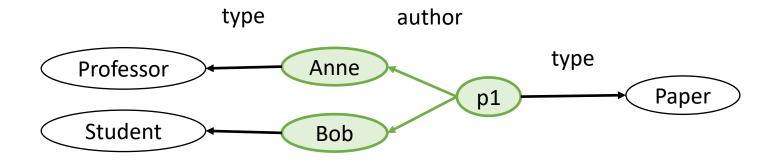
 $B(G, p1, \phi)$



 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \leq_0 type. \{Student\}$

"The node has an author and at most one author is not a student."

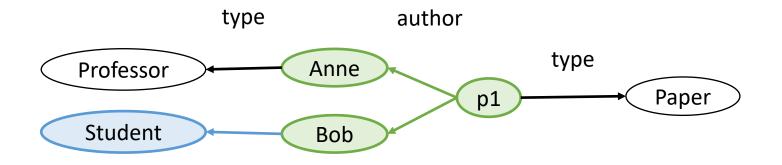
 $B(G, p1, \phi)$



 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \leq_0 type. \{Student\}$

"The node has an author and at most one author is not a student."

 $B(G,p1,\phi)$



 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \leq_0 type. \{Student\}$

"The node has an author and at most one author is not a student."

 $B(G,p1,\phi)$

Shape Fragments

... as an application of neighborhoods.

We define **Frag**(*G*, *S*) as the union of all neighborhoods of nodes satisfying the shapes from *S* in *G*.

Let *H* be a shape schema, we define:

 $Frag(G, H) \coloneqq Frag(G, S)$

where $S = \{\phi \land \tau \mid \tau \text{ is the target of } \phi \text{ in } H\}$

Correctness properties

We have established:

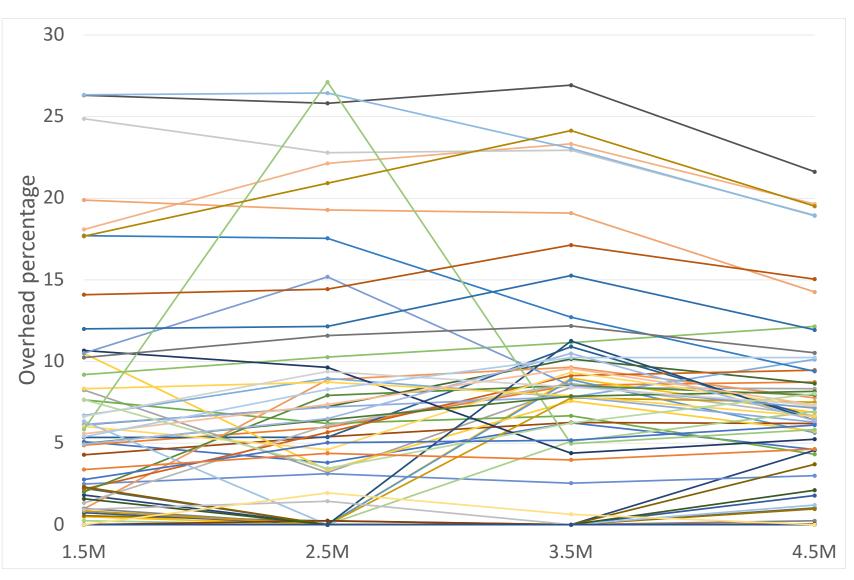
Sufficiency Theorem. If a node v satisfies a shape ϕ in a graph G, then: v also satisfies ϕ in G' for any subgraph $G' \subseteq G$ s.t. $B(G, v, \phi) \subseteq G'$.

Conformance Theorem. If a graph G satisfies a schema H, then: Frag(G, H) also conforms to H.

Tools

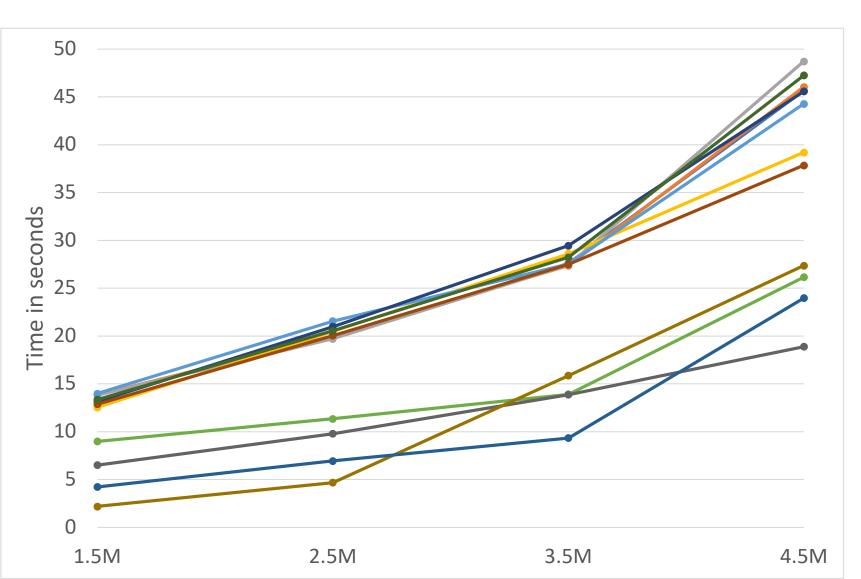
- PySHACL implementation
- Translation to SPARQL
 - Conformance queries
 - Neighborhood queries

PySHACL overhead



- 56 shapes
- $1.5 \rightarrow 4.5$ M triples
 - Average: 10%
- Average $\geq 1s$: 15,6%

SPARQL query run time



- 13 shapes
- $1.5 \rightarrow 4.5 \text{M}$ triples

Paths

SHACL supports (regular) path expressions:

$$E \coloneqq p \mid p^- \mid E \cup E \mid E/E \mid E^* \mid E?$$

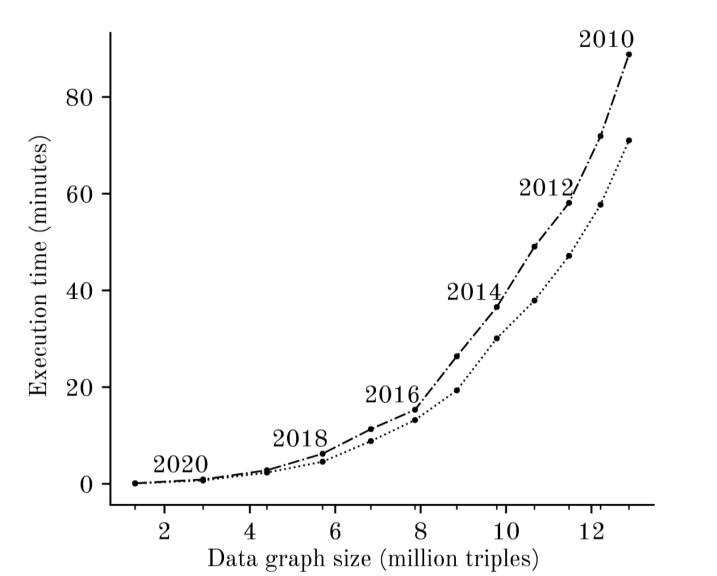
The neighborhood collects all triples on a path.

Example:

$$\geq_1 a^{-}/a/a^{-}/a.\{MYV\}$$

→ retrieves all authors of distance 3 from {MYV}, and all triples on that path.

Path shape with SPARQL



- Executed on DBLP RDF data
- Run on two SPARQL engines:
 - Jena ARQ (dotted)
 - GraphDB (dashed)

Concluding remarks

- There are many different 'reasonable' ways to define subgraphs from a shape
- Different definitions have different properties

- Sufficiency is a well-known property
- What properties can a subgraph have?
 - ... e.g., can we define subgraphs that are minimally sufficient and unique?

• What do we do with subinstance provenance in presence of negation?