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SHACL

* Shapes Constraint Language
* Constraint language for RDF graphs
* Conformance checking

:BookShape
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.

:BookShape sh:targetClass :Book.

>, type.Book € > title. T

“Fellowship of the Ring”



Shapes

Let N, P and S be disjoint universes of node names, property names and shape
names.

d=Tl{c}IsldpAP|lPpVP|ap|VE.p| =,E. ¢

| eq(E,p) | disj(E,p) | closed(Q)
E:=plp |EUE|EJ/E|E*|E?

wherece N,p€eP,seSandQ € P

E areregular path queries with inverse and zero-or-one paths



Example shapes

* “Through a path of edges, the node can reach node d”

* ¢ == friend". {d} @
* b,c,anddsatisfy ¢ inG |

* “Nodes where ship is mutual” ' @
¢ = eq(friend, friend™)

« canddsatisfy ¢ inG ‘
© @

 “Nodes who have at least one who is also a
* ¢ = —disj(friend, colleague) friend
* bandcsatisfy ¢ in G colleague



Shape schemas

The main task is to check whether a graph conforms to some constraints, not single nodes.

A shape definition is a statement of the form: s « ¢

A shape schema consists of shape definitions and inclusion statements

bt € Ps
SHACL allows only the following target shapes ¢, :
* Node targets: {c}
* Class-based targets: >, subclassOf™. >; type.{c}
* Objects-of targets: > p~.T
» Subjects-of targets: >1p-T

,’ We show that real SHACL can be translated to our formalism




Provenance & Neighborhoods

* Our goal: Provide provenance of a shape schema

* Provide a subgraph of the data that is relevant

We define the neighborhood: B(G, v, ¢)
* (G agraph
* vanode
* ¢ ashape
What part of G is relevant to decide that v satisfies ¢ in G?



Neighborhood definition

Negation is handled by considering the shapes in negation normal form

Simplified shapes (no path expressions):

d=Tl{c} | pAPIPVPIVp.p| =pp.¢ | eq(p,q) | disj(p,q) | closed(Q)

| LI<,p.® | =eq(p,q) | =disj(p,q) | -closed(Q)

Neighborhood of a node v according to a shape ¢ in graph G: B(G,v, ¢)

* When the node v does not satisfy ¢ in G, the neighborhood is empty

» Shapes that do not use any properties, also have an empty neighborhood



Conjunction and disjunction

... are defined as the union of neighborhoods

° B(G; v, ¢1 A ¢2) — B(G, v, ¢1) U B(G,U, ¢2)

° B(G; v, ¢1 \% ¢2) — B(G: U, ¢1) U B(G,U, ¢2)



Equality: eq(p, q)

B(G,v,¢)
G

< @<



Nonequality: —eq(p, q)

G B(G,v, )

.




Disjointness: disj(p, q)

* Empty neighborhood satisfies the disjointness shape

* Relaxing the definition to add p and g edges does not violate the

correctness properties



Nondisjointness: —disj(», q)

G




Closedness: closed(Q)

* Empty neighborhood satisfies the closedness shape

* Relaxing the definition to add all edges from Q does not violate the

correctness properties



Nonclosure: —closed({1})

G

"



Quantifiers: Vp. ¢

G B(G,v,¢)

4N




Quantifiers: > p. ¢y

G B(G,v,¢)

/@




Quantifiers: <; p. ¢y

G B(G,v,¢)

/O v .




¢ = =1 author.T A <4 author.—=q type.{Student}

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)



¢ = =1 author. T A < author. type.{Student}

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)



Example

type author

Professor Anne type

pl "@

Bob

A <4 author. <q type.{Student}

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)



Example

type author
p1 ~CPaper O
Student Bob
N\

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)



Shape Fragments

... as an application of neighborhoods.

We define Frag(G, S) as the union of all neighborhoods of nodes satisfying the
shapesfrom SinG.

Let H be a shape schema, we define:

Frag(G, H) := Frag(G,S)

whereS = {¢p At | Tisthe targetof ¢ in H}



Correctness properties

We have established:

Sufficiency Theorem. If a node v satisfies a shape ¢ in a graph G, then:
v also satisfies ¢ in G’ for any subgraph ¢’ € G s.t. B(G,v,¢) S G'.

Conformance Theorem. If a graph G satisfies a schema H, then:
Frag(G, H) also conforms to H.



Tools

* PySHACL implementation

* Translation to SPARQL

 Conformance queries

* Neighborhood queries

O https://github.com/shape-fragments




Overhead percentage
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PySHACL overhead

56 shapes
1.5 - 4.5M triples

Average:
Average = 1s:

10%
15,6%



SPARQL query run time
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Paths

SHACL supports (regular) path expressions:
E=pl|lp " |EVEI|E/EI|E"|E?
The neighborhood collects all triples on a path.

Example:
>, a /a/a” Ja/a” [/a.{MYV}

— retrieves all authors of distance 3 from {MYV}, and all
triples on that path.



Execution time (minutes)

Path shape with SPARQL
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* Executed on DBLP RDF data
* Run on two SPARQL engines:
* Jena ARQ (dotted)
* GraphDB (dashed)



Concluding remarks

* There are many different ‘reasonable’ ways to define subgraphs from a shape

* Different definitions have different properties

* Sufficiency is a well-known property

* What properties can a subgraph have?

... e.g., can we define subgraphs that are minimally sufficient and unique?

* What do we do with subinstance provenance in presence of negation?



