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SHACL
• Shapes Constraint Language
• Constraint language for RDF graphs
• Conformance checking

:BookShape
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.

:BookShape sh:targetClass :Book.

≥! 𝑡𝑦𝑝𝑒. 𝐵𝑜𝑜𝑘 ⊆ ≥! 𝑡𝑖𝑡𝑙𝑒. ⊤



Shapes
Let	𝑁, 𝑃 and	𝑆 be	disjoint	universes	of	node	names,	property	names	and	shape	
names.

The language 𝐿

𝜙 ≔ ⊤ ∣ 𝑐 ∣ 𝑠 ∣ 𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 ∣ ¬𝜙 ∣ ∀𝐸. 𝜙 ∣ ≥"𝐸. 𝜙

∣ 𝑒𝑞 𝐸, 𝑝 ∣ 𝑑𝑖𝑠𝑗 𝐸, 𝑝 ∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄

𝐸 ≔ 𝑝 ∣ 𝑝# ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗ ∣ 𝐸?

where	𝑐 ∈ 𝑁,	𝑝 ∈ 𝑃,	𝑠 ∈ 𝑆 and	𝑄 ⊆ 𝑃

𝐸 are regular path queries with inverse and zero-or-one paths



Example shapes
• “Through a path of friend edges, the node can reach node d”

• 𝜙 ≡ ≥! 𝑓𝑟𝑖𝑒𝑛𝑑∗. {𝑑}
• b, c, and d satisfy 𝜙 in 𝐺

• “Nodes where friendship is mutual”
• 𝜙 ≡ 𝑒𝑞 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑓𝑟𝑖𝑒𝑛𝑑#

• c and d satisfy𝜙 in 𝐺

• “Nodes who have at least one colleague who is also a friend”
• 𝜙 ≡ ¬𝑑𝑖𝑠𝑗(𝑓𝑟𝑖𝑒𝑛𝑑, 𝑐𝑜𝑙𝑙𝑒𝑎𝑔𝑢𝑒)
• b and c satisfy𝜙 in G



Shape schemas
The main task is to check whether a graph conforms to some constraints, not single nodes. 

A shape definition is a statement of the form: 𝑠 ← 𝜙

A shape schema consists of shape definitions and inclusion statements 

𝜙$ ⊆ 𝜙%

SHACL allows only the following target shapes 𝜙$ :

• Node targets: {𝑐}
• Class-based targets: ≥! subclassOf ∗. ≥! type. {𝑐}
• Objects-of targets: ≥! 𝑝#. ⊤
• Subjects-of targets: ≥! 𝑝. ⊤

We show that real SHACL can be translated to our formalism



Provenance & Neighborhoods

• Our goal: Provide provenance of a shape schema

• Provide a subgraph of the data that is relevant

We define the neighborhood: 𝐵(𝐺, 𝑣, 𝜙)
• 𝐺 a graph
• 𝑣 a node
• 𝜙 a shape

What part of 𝐺 is relevant to decide that 𝑣 satisfies 𝜙 in 𝐺?



Neighborhood definition
Negation is handled by considering the shapes in negation normal form

Simplified shapes (no path expressions):

𝜙 ≔ ⊤ ∣ 𝑐 ∣ 𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 ∣ ∀𝑝. 𝜙 ∣ ≥!𝑝. 𝜙 ∣ 𝑒𝑞 𝑝, 𝑞 ∣ 𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄

∣ ⊥ ∣ ≤! 𝑝. 𝜙 ∣ ¬𝑒𝑞 𝑝, 𝑞 ∣ ¬𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝑄)

Neighborhood of a node 𝑣 according to a shape 𝜙 in graph 𝐺:   𝐵 𝐺, 𝑣, 𝜙

• When the node 𝑣 does not satisfy 𝜙 in 𝐺, the neighborhood is empty

• Shapes that do not use any properties, also have an empty neighborhood 



Conjunction and disjunction
… are defined as the union of neighborhoods

• 𝐵 𝐺, 𝑣, 𝝓𝟏 ∧ 𝝓𝟐 = 𝐵 𝐺, 𝑣, 𝜙M ∪ 𝐵 𝐺, 𝑣, 𝜙N

• 𝐵 𝐺, 𝑣, 𝝓𝟏 ∨ 𝝓𝟐 = 𝐵 𝐺, 𝑣, 𝜙M ∪ 𝐵 𝐺, 𝑣, 𝜙N



Equality: 𝒆𝒒(𝒑, 𝒒)

𝑣 𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺



Nonequality: ¬𝒆𝒒(𝒑, 𝒒)

𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣



Disjointness: 𝒅𝒊𝒔𝒋(𝒑, 𝒒)

• Empty neighborhood satisfies the disjointness shape

• Relaxing the definition to add 𝑝 and 𝑞 edges does not violate the 

correctness properties



Nondisjointness: ¬𝒅𝒊𝒔𝒋(𝒑, 𝒒)

𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣



Closedness: 𝒄𝒍𝒐𝒔𝒆𝒅(𝑸)

• Empty neighborhood satisfies the closedness shape

• Relaxing the definition to add all edges from 𝑄 does not violate the 

correctness properties



Nonclosure: ¬𝒄𝒍𝒐𝒔𝒆𝒅 {𝒑}

𝐵(𝐺, 𝑣, 𝜙)𝐺

𝑣 𝑣



Quantifiers: ∀𝒑.𝝍

𝑣

𝐺

𝑣

𝐵(𝐺, 𝑣, 𝜙)



Quantifiers: ≥𝟏 𝒑.𝝍

𝑣

𝐺

𝑣

𝐵(𝐺, 𝑣, 𝜙)



Quantifiers: ≤𝟏 𝒑.𝝍

𝑣 𝑣

𝐵(𝐺, 𝑣, 𝜙)𝐺



Example

p1 Paper
Bob

Anne

Student

Professor

type author

type
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𝐵(𝐺, 𝑝1, 𝜙)
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Shape Fragments
… as an application of neighborhoods.

We define Frag 𝑮, 𝑺 as the union of all neighborhoods of nodes satisfying the 
shapes from 𝑆 in 𝐺. 

Let 𝐻 be a shape schema, we define:

Frag 𝑮,𝑯 ≔ Frag(𝐺, 𝑆)

where 𝑆 = {𝜙 ∧ 𝜏 ∣ 𝜏 is the target of 𝜙 in𝐻}



Correctness properties

We have established:

Sufficiency Theorem.  If a node 𝑣 satisfies a shape 𝜙 in a graph 𝐺, then: 

𝑣 also satisfies 𝜙 in 𝐺′ for any subgraph 𝐺! ⊆ 𝐺 s.t. 𝐵 𝐺, 𝑣, 𝜙 ⊆ 𝐺!.

Conformance Theorem. If a graph 𝐺 satisfies a schema 𝐻, then:
Frag(𝐺, 𝐻) also conforms to 𝐻.



Tools

• PySHACL implementation

• Translation to SPARQL

• Conformance queries

• Neighborhood queries

https://github.com/shape-fragments



PySHACL overhead
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• 56 shapes 
• 1.5 → 4.5M triples

• Average: 10% 
• Average ≥ 1s: 15,6% 



SPARQL query run time
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• 13 shapes
• 1.5 → 4.5M triples



Paths
SHACL supports (regular) path expressions:

𝐸 ≔ 𝑝 ∣ 𝑝O ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗ ∣ 𝐸?

The neighborhood collects all triples on a path.

Example:   
≥M 𝑎O/𝑎/𝑎O/𝑎/𝑎O/𝑎. {MYV}

→ retrieves all authors of distance 3 from MYV , and all  
triples on that path.



Path shape with SPARQL
• Executed on DBLP RDF data

• Run on two SPARQL engines:

• Jena ARQ (dotted)

• GraphDB (dashed)



Concluding remarks
• There are many different ‘reasonable’ ways to define subgraphs from a shape

• Different definitions have different properties

• Sufficiency is a well-known property

• What properties can a subgraph have?

… e.g., can we define subgraphs that are minimally sufficient and unique?

• What do we do with subinstance provenance in presence of negation?


