Introduction	SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
●0	00		000000	0

SHACL: A Description Logic in Disguise

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

Vrije Universiteit Brussel & Universiteit Hasselt

September 2022

Introduction ●0	SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion 0

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

Introduction ●0	SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion O

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

:BookShape

```
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.
```

```
:BookShape sh:targetClass :Book
```


Introduction ●0	SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion O

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

:BookShape

```
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.
```

:BookShape sh:targetClass :Book

Introduction	SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
○●	00		000000	0

What is an appropriate formalization of SHACL?

SHACL formalism ●0	SHACL as a Description Logic	Further Research 000000	Conclusion 0

$\begin{array}{c} {\rm SHACL \ shapes} \\ {\rm The \ language \ } \mathcal{L} \end{array}$

$$\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi$$
$$E ::= p | p^- | E \cup E | E/E | E^*$$

SHACL formalism ●0	SHACL as a Description Logic	Further Research 000000	Conclusion O

$\begin{array}{c} \mathrm{SHACL} \text{ shapes} \\ \mathrm{The} \text{ language } \mathcal{L} \end{array}$

$$\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi$$
$$E ::= p | p^- | E \cup E | E/E | E^*$$

An interpretation *I*:

- domain Δ^{\prime}
- interprets *node names*
- interprets property names

$$\begin{array}{ll}
\phi & I, a \vDash \phi \text{ if:} \\
\hline
\{c\} & a = \llbracket c \rrbracket^{I} \\
\geq_{n} E.\psi & \sharp \{b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi\} \ge n \\
\forall E.\psi & \text{every } b \in \llbracket E \rrbracket^{I}(a) \text{ must } I, b \vDash \psi
\end{array}$$

SHACL formalism ●0	SHACL as a Description Logic	Further Research 000000	Conclusion 0

SHACL shapes

The language $\mathcal{L}(eq, disj, closed, ?)$

 $\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi | eq(p, E) | disj(p, E) | closed(Q)$ $E ::= p | p^- | E \cup E | E/E | E^* | E?$

Distinctive features:

- Equality
- Disjointness
- Closure
- Zero-or-one path

 $\begin{array}{c|c} \phi & I, a \vDash \phi \text{ if:} \\ \hline \{c\} & a = \llbracket c \rrbracket^{I} \\ \geq_{n} E.\psi & \sharp \{b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi\} \geq n \\ eq(E,p) & \text{the sets } \llbracket E \rrbracket^{I}(a) \text{ and } \llbracket p \rrbracket^{I}(a) \text{ are equal} \\ disj(E,p) & \text{the sets } \llbracket E \rrbracket^{I}(a) \text{ and } \llbracket p \rrbracket^{I}(a) \text{ are disjoint} \\ closed(R) & \llbracket p \rrbracket^{I}(a) \text{ is empty for each } p \in \Sigma - R \end{array}$

SHACL formalism ●0	SHACL as a Description Logic	Further Research 000000	Conclusion 0

SHACL shapes

The language $\mathcal{L}(eq, disj, closed, ?)$

 $\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi | eq(p, E) | disj(p, E) | closed(Q)$ $E ::= p | p^- | E \cup E | E/E | E^* | E?$

Distinctive features:

- Equality
- Disjointness
- Closure
- Zero-or-one path

$$\begin{array}{c|c} \phi & I, a \vDash \phi \text{ if:} \\ \hline \{c\} & a = \llbracket c \rrbracket^{I} \\ \geq_{n} E.\psi & \sharp \{b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi\} \geq n \\ eq(E,p) & \text{the sets } \llbracket E \rrbracket^{I}(a) \text{ and } \llbracket p \rrbracket^{I}(a) \text{ are equal} \\ disj(E,p) & \text{the sets } \llbracket E \rrbracket^{I}(a) \text{ and } \llbracket p \rrbracket^{I}(a) \text{ are disjoint} \\ closed(R) & \llbracket p \rrbracket^{I}(a) \text{ is empty for each } p \in \Sigma - R \end{array}$$

A shape schema is a set of shape inclusions, e.g., \geq_1 type.{Book} $\subseteq \geq_1$ title. \top

SHACL formalism ○●	SHACL as a Description Logic	Further Research 000000	Conclusion 0

LPNMRAuthor $\leftarrow \exists author/venue.\{LPNMR\}$

SHACL formalism ○●	SHACL as a Description Logic	Further Research 000000	Conclusion O

LPNMRAuthor $\leftarrow \exists author/venue.\{LPNMR\}$

 $\exists presentsAt. \{LPNMR\} \subseteq LPNMRAuthor$

SHACL formalism ⊙●	SHACL as a Description Logic	Further Research 000000	Conclusion 0

 $LPNMRAuthor \leftarrow \exists author/venue.\{LPNMR\}$ NotLPNMRAuthor $\leftarrow \neg LPNMRAuthor$

 $\exists presentsAt. \{LPNMR\} \subseteq LPNMRAuthor$

SHACL formalism $\circ \bullet$	SHACL as a Description Logic	Further Research 000000	Conclusion 0

 $LPNMRAuthor \leftarrow \exists author/venue.\{LPNMR\}$ NotLPNMRAuthor $\leftarrow \neg LPNMRAuthor$

 $\exists presentsAt.\{LPNMR\} \subseteq LPNMRAuthor$ {*Marco*} \subseteq *NotLPNMRAuthor*

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	•0000	000000	0

Observation: SHACL is a Description Logic!

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0●000	000000	0

Description Logics

Ontology / Knowledge Base

- Terminology (TBox): what are the concepts and their relations?
- Assertions (ABox): what is the known information?

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0●000	000000	0

Description Logics

Ontology / Knowledge Base

- Terminology (TBox): what are the concepts and their relations?
- Assertions (ABox): what is the known information?
- Example:

```
TBox:
Author ⊑ Human □ ∃hasWritten . Publication
ABox:
Author : tolkien
hasWritten : (tolkien, fotr)
```

SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion 0

SHACL as a Description Logic

- TBox is a finite set of shape inclusions, given by the shape schema
 - Definitions: :BookShape $\equiv \exists$:title. \top
 - Targeting: \exists :writtenBy. $\top \sqsubseteq$:BookShape
- There is no ABox

Different reasoning tasks:

- Normally, higher-order reasoning tasks: consistency, entailment, ...
- SHACL does model checking

SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion 0

SHACL as a Description Logic

- TBox is a finite set of shape inclusions, given by the shape schema
 - Definitions: :BookShape $\equiv \exists$:title. \top
 - Targeting: \exists :writtenBy. $\top \sqsubseteq$:BookShape
- There is no ABox

Different reasoning tasks:

- Normally, higher-order reasoning tasks: consistency, entailment, ...
- SHACL does model checking
- ... but what then is the interpretation?

SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion 0

What's in an RDF graph?

- A graph is a finite set of *facts*
- A fact is of the form p(a, b) with p a property name and a, b nodes of G.

We associate to any given graph an interpretation I:

- The domain is the universe of *all nodes*
- Every constant is interpreted as itself
- The interpretation of a property name is fixed by the facts

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

NotLPNMRAuthor $\leftarrow \neg \exists author / venue. \{LPNMR\}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

NotLPNMRAuthor $\leftarrow \neg \exists author/venue.\{LPNMR\}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

 $NotLPNMRAuthor \leftarrow \neg \exists author / venue. \{LPNMR\}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

• *NotLPNMRAuthor* evaluates to *N* – {*Bart*, *Me*}

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

NotLPNMRAuthor $\leftarrow \neg \exists author / venue. \{LPNMR\}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

NotLPNMRAuthor evaluates to N - {Bart, Me}
 ... because the domain is the universe of all nodes (N)

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

NotLPNMRAuthor $\leftarrow \neg \exists author/venue.{LPNMR}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

- NotLPNMRAuthor evaluates to N {Bart, Me}
 ... because the domain is the universe of all nodes (N)
- {*Marco*} evaluates to {*Marco*}

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	O

NotLPNMRAuthor $\leftarrow \neg \exists author/venue.{LPNMR}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

- NotLPNMRAuthor evaluates to N {Bart, Me}
 ... because the domain is the universe of all nodes (N)
- {*Marco*} evaluates to {*Marco*}
 - ... because all constants are interpreted as themselves

SHACL formalism	SHACL as a Description Logic	Further Research	Conclusion
00	0000●	000000	0

NotLPNMRAuthor $\leftarrow \neg \exists author/venue.\{LPNMR\}$

 $\{Marco\} \subseteq NotLPNMRAuthor$

- NotLPNMRAuthor evaluates to N {Bart, Me}
 ... because the domain is the universe of all nodes (N)
- {*Marco*} evaluates to {*Marco*}
 - ... because all constants are interpreted as themselves

\implies This is also the behavior of **real** SHACL!

SHACL formalism 00	SHACL as a Description Logic	Further Research ●00000	Conclusion 0

Question: what about expressiveness?

SHACL formalism 00	SHACL as a Description Logic	Further Research 0●0000	Conclusion 0

Expressiveness

There is no shape that can express these concepts:

4-clique

"The node belongs to a 4-clique"

- SHACL is subsumed by 3-variable infinitary logic
- Known to be not expressible

Majority

"A conference has more attendees than it has papers"

- SHACL is subsumed by *first-order logic*
- Known to be not expressible

SHACL formalism 00	SHACL as a Description Logic	Further Research 00●000	Conclusion 0

SHACL shapes

The language $\mathcal{L}(eq, disj, closed, ?)$

 $\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi | eq(p, E) | disj(p, E) | closed(Q)$ $E ::= p | p^- | E \cup E | E/E | E^* | E?$

 ${\it E}$ are regular path queries with inverse

Distinctive features:

- Equality
- Disjointness
- Closure
- Zero-or-one path

ϕ	$I, a \vDash \phi$ if:
$\{c\}$	$a = \llbracket c \rrbracket^{I}$
$\geq_n E.\psi$	$\sharp \{ b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi \} \geq n$
eq(E,p)	the sets $\llbracket E \rrbracket'(a)$ and $\llbracket p \rrbracket'(a)$ are equal
disj(E,p)	the sets $\llbracket E \rrbracket^{\prime}(a)$ and $\llbracket p \rrbracket^{\prime}(a)$ are disjoint
closed(R)	$\llbracket p rbracket^{I}(a)$ is empty for each $p \in \Sigma - R$

SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion 0

Relative Expressiveness

For each distinguished feature $X \in \{eq, disj, closed, ?\}$ we define a class of graphs Q_X such that:

- Q_X is definable by a simple shape constraint using only the feature X
- Q_X is **not** definable without X

For example, let X = eq:

- Q_{eq} is the class of symmetric graphs
- Q_{eq} is expressible with the constraint $\exists r. \top \subseteq eq(r, r^{-})$
- Q_{eq} is not expressible without eq

SHACL formalism 00	SHACL as a Description Logic	Further Research 0000●0	Conclusion 0

Question: semantics of recursion?

SHACL formalism 00	SHACL as a Description Logic	Further Research 00000●	Conclusion 0

Fixpoint semantics

Method:

- We need an operator on interpretations
- Define recursive semantics using fixpoints of this operator

By applying Approximation Fixpoint Theory we obtain known semantics for SHACL like stable models and well-founded models

- No need to reinvent semantics
- We directly obtain strong formal foundation for the study of recursive SHACL

SHACL formalism 00	SHACL as a Description Logic	Further Research 000000	Conclusion •

Conclusion

- It is of value to put emphasis on the formalization of SHACL
 - What does the RDF graph represent?
 - What are the exact semantics of the language?
- In the semantic web, both OWL and SHACL are used for modeling tasks
 - OWL has its logical foundations in Description Logic
 - ... according to us, SHACL does too
- With a proper formalization, we can better study SHACL