
Fixpoint Semantics for Recursive SHACL ICLP 2021

Bart Bogaerts & Maxime Jakubowski

Vrije Universiteit Brussel & Universiteit Hasselt

September 2021

Semantic Web

Large datasets

Data quality: constraints

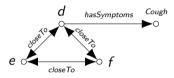
Shapes Constraint Language (SHACL)

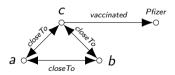
SHACL [Corman 2018]

Shape expressions

$$E ::= p \mid p^- \mid E \cup E \mid E \circ E \mid E^* \mid E?$$

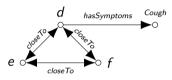
$$\phi ::= \top \mid s \mid \{c\} \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \forall E.\phi \mid \geq_n E.\phi \mid eq(p, E) \mid disj(p, E) \mid closed(Q)$$

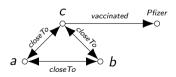

Schema


Shape definitions: $s \leftarrow \phi$ Target inclusions: $\phi \subseteq s$

Example:

$$Isolated \leftarrow \leq_2 closeTo$$
. $∃type.{Person} ⊆ Isolated$


SHACL examples



 $AtRisk \leftarrow \neg \exists vaccinated. \top \land \exists hasSymptoms. \top$

SHACL examples

 $AtRisk \leftarrow \neg \exists vaccinated. \top \land (\exists hasSymptoms. \top \lor)$ $\exists closeTo.AtRisk)$

Recursive Semantics: related work

[Corman 2018] — supported model semantics

[Andreşel 2020] — stable model semantics

Recursive Semantics: related work

[Corman 2018] — supported model semantics

[Andreșel 2020] — stable model semantics

... what about other semantics?

Approximation Fixpoint Theory

Given

Complete lattice $\langle L, \leq \rangle$

(Approximation) bilattice $\langle L^2, \leq, \leq_p \rangle$

Lattice operator $O: L \rightarrow L$,

Approximating bilattice operator $A: L^2 \rightarrow L^2$:

$$O(x) \in A(x,x)$$

<_p-monotone

Often assumed

Symmetric: $A(x, y) = (A(y, x)_2, A(y, x)_1)$

Exact: A(x, x) = (O(x), O(x))

Stable operator

 $S_A(x,y) \mapsto (Ifp A(\cdot,y)_1, Ifp A(x,\cdot)_2)$

Fixpoints

Supported: O(x) = x

Partial supported A(x, y) = (x, y)

Partial stable $S_A(x, y) = (x, y)$

Stable: x s.t. (x,x) is partial stable

Kripke-Kleene: If $p \leq_p A$

Well-founded: If $p \leq_{p} S_{A}$

Grounded: $x \text{ s.t. } \forall v : O(x \land v) \leq v \Rightarrow x \leq v.$

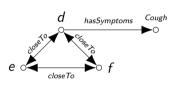
Recursive Semantics: comparison

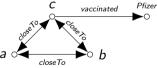
[Corman 2018] — supported model semantics (CRS)

Theorem

The CRS-operator is a consistent approximator.

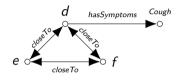
Theorem

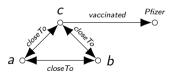

CRS-supported models coincide with AFT-supported models.


[Andreşel 2020] — stable model semantics (ACROSS)

Theorem

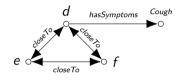
An AFT-stable model of a set of shape definitions is also an ACROSS-stable model of those definitions. If the shapes are in normal form, the converse also holds.

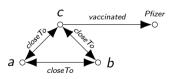

Difference in semantics



 $\textit{Safe} \leftarrow \exists \textit{vaccinated}. \top \lor \leq_1 \textit{closeTo}. \neg \textit{Safe}$

Difference in semantics





 $\textit{Safe} \leftarrow \exists \textit{vaccinated}. \top \lor \leq_{1} \textit{closeTo}. \neg \textit{Safe}$

AFT-stable model $M = \{Safe(a), Safe(b), Safe(c)\}$

Difference in semantics

 $Safe \leftarrow \exists vaccinated. \top \lor \leq_1 close To. \neg Safe$

AFT-stable model $M = \{Safe(a), Safe(b), Safe(c)\}$

ACROSS-stable models M and $M \cup \{Safe(d), Safe(e), Safe(f)\}$

Conclusion

ullet To apply AFT to SHACL we only needed to observe [Corman 2018] already had a suitable operator

Conclusion

- ullet To apply AFT to SHACL we only needed to observe [Corman 2018] already had a suitable operator
- AFT comes with a large body of theoretical results on, e.g., stratification, predicate introduction and strong equivalence
- Semantics behave as expected

Conclusion

- To apply AFT to SHACL we only needed to observe [Corman 2018] already had a suitable operator
- AFT comes with a large body of theoretical results on, e.g., stratification, predicate introduction and strong equivalence
- Semantics behave as expected
- We do not want to reinvent semantics
- ullet We establish a strong formal foundation for the study of recursive SHACL