Expressiveness of SHACL Features ICDT 2021

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

Vrije Universiteit Brussel & Universiteit Hasselt

March 2022

Introduction	Expressiveness	Conclusion
•	000000	0

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

Introduction •	Expressiveness 000000	C o

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

:BookShape

```
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.
```

:BookShape sh:targetClass :Book

```
\geq_1 type.Book \subseteq \geq_1 title.	op
```


 Introduction
 SHACL formalism
 Expressiveness

 ●
 0000
 000000

SHACL

- Shapes Constraint Language
- Constraint language for RDF graphs
- Conformance checking

:BookShape

```
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.
```

:BookShape sh:targetClass :Book

 \geq_1 type.Book $\subseteq \geq_1$ title.op

	SHACL formalism ●000	Expressiveness 000000	Conclusion 0
SHACL shapes The language $\mathcal L$			

$$\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi$$
$$E ::= p | p^- | E \cup E | E/E | E^*$$

E are regular path queries with inverse

SHACL formalism ●000	Expressiveness 000000	Conclusion 0

$\begin{array}{c} \mathrm{SHACL} \text{ shapes} \\ \mathrm{The} \text{ language } \mathcal{L} \end{array}$

$$\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi$$
$$E ::= \rho | \rho^- | E \cup E | E/E | E^*$$

 ${\it E}$ are regular path queries with inverse

An interpretation *I*:

- domain Δ'
- interprets node names
- interprets property names

ϕ	$I, a \vDash \phi$ if:
$\{c\}$	$a = \llbracket c \rrbracket^{I}$
$\geq_n E.\psi$	$\sharp \{ b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi \} \geq n$
$\forall E.\psi$	every $b \in \llbracket E \rrbracket^I(a)$ must $I, b \vDash \psi$

SHACL formalism ●000	Expressiveness 000000	Conclusion O

SHACL shapes

The language $\mathcal{L}(eq, disj, closed, ?)$

 $\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi | eq(p, E) | disj(p, E) | closed(Q)$ $E ::= p | p^- | E \cup E | E/E | E^* | E?$

 ${\it E}$ are regular path queries with inverse

Distinctive features:

- Equality
- Disjointness
- Closure
- Zero-or-one path

ϕ	$I, a \vDash \phi$ if:
$\{c\}$	$a = \llbracket c \rrbracket^{I}$
$\geq_n E.\psi$	$\sharp \{ b \in \llbracket E \rrbracket^{I}(a) \mid I, b \vDash \psi \} \geq n$
eq(E,p)	the sets $\llbracket E \rrbracket^{I}(a)$ and $\llbracket p \rrbracket^{I}(a)$ are equal
disj(E, p)	the sets $\llbracket E \rrbracket'(a)$ and $\llbracket p \rrbracket'(a)$ are disjoint
closed(R)	$\llbracket p rbracket^I(a)$ is empty for each $p \in \Sigma - R$

	SHACL formalism ●000	Expressiveness 000000	Conclusion O
CITACI shares			
SHACL snapes			

The language $\mathcal{L}(eq, disj, closed, ?)$

 $\phi ::= \top | \{c\} | \phi \land \phi | \phi \lor \phi | \neg \phi | \forall E.\phi | \ge_n E.\phi | eq(p, E) | disj(p, E) | closed(Q)$ $E ::= p | p^- | E \cup E | E/E | E^* | E?$

 ${\it E}$ are regular path queries with inverse

Do we need these features in the language?

SHACL formalism o●oo	Expressiveness 000000	Conclusion 0

"Through a path of friend edges, the node can reach node d "

 $\phi \equiv \geq_1 friend^*.\{d\}$

SHACL formalism o●oo	Expressiveness 000000	Conclusion 0

"Through a path of friend edges, the node can reach node d"

 $\phi \equiv \geq_1 friend^*.\{d\}$ $\llbracket \phi \rrbracket^G = \{b, c, d\}$

 \rightarrow friend \rightarrow colleague

SHACL formalism	Expressiveness	Conclusion
o●oo	000000	O

"Through a path of friend edges, the node can reach node d"

 $\phi \equiv \geq_1 \textit{friend}^*.\{d\}$ $\llbracket \phi \rrbracket^G = \{b, c, d\}$

"Nodes where the friendship is mutual"

 $\phi \equiv eq(friend, friend^{-})$

SHACL formalism	Expressiveness	Conclusion
o●oo	000000	0

"Through a path of friend edges, the node can reach node d"

$$\phi \equiv \geq_1$$
 friend*. $\{d\}$
 $\llbracket \phi \rrbracket^G = \{b, c, d\}$

"Nodes where the friendship is mutual"

$$\phi \equiv eq(friend, friend^{-})$$

 $\llbracket \phi \rrbracket^{G} = \{c, d\}$

Introduction SHACL formalism Expressiveness Conclusion o

Example shapes

"Through a path of friend edges, the node can reach node d"

 $\phi \equiv \geq_1 \textit{friend}^*.\{d\}$ $\llbracket \phi \rrbracket^G = \{b, c, d\}$

"Nodes where the friendship is mutual"

$$\phi \equiv eq(friend, friend^{-})$$

 $\llbracket \phi \rrbracket^{G} = \{c, d\}$

"Nodes who have at least one colleague who is also a friend "

$$\phi \equiv \neg disj(friend, colleague)$$

Introduction SHACL formalism Expressiveness Conclusion o ooo oo o o

Example shapes

"Through a path of friend edges, the node can reach node d"

 $\phi \equiv \geq_1 \textit{friend}^*.\{d\}$ $\llbracket \phi \rrbracket^G = \{b, c, d\}$

"Nodes where the friendship is mutual"

$$\phi \equiv eq(friend, friend^{-})$$

 $\llbracket \phi \rrbracket^{G} = \{c, d\}$

"Nodes who have at least one colleague who is also a friend "

$$\phi \equiv \neg disj(friend, colleague)$$
$$\llbracket \phi \rrbracket^{G} = \{b, c\}$$

 \rightarrow friend \rightarrow colleague

SHACL formalism	Conclusion
0000	

Graphs and interpretations

- A graph is a finite set of *facts*
- A fact is of the form p(a, b) with p a property name and a, b nodes from the graph

We associate to any given graph an interpretation I:

- The domain is the universe of *all nodes*
- Every constant is interpreted as itself
- The interpretation of a property name is fixed by the facts

SHACL formalism	Expressiveness	Conclusion
000●	000000	0

Shape schemas

A shape schema is a set of inclusion statements

 $\phi_t \subseteq \phi_s$

A shape schema *defines* a class of graphs.

SHACL formalism	Expressiveness	Conclusion
	000000	

Shape schemas

A shape schema is a set of inclusion statements

$$\phi_t \subseteq \phi_s$$

A shape schema *defines* a class of graphs.

Example: the class of symmetric graphs.

 $\geq_1 r. \top \subseteq eq(r, r^-)$

 Introduction
 SHACL formalism
 Expressiveness
 Conclusion

 0
 0000
 0
 0

Main result: primitivity of the features

For each feature $X \in \{eq, disj, closed, ?\}$ we define a class of graphs Q_X such that:

- Q_X is definable by a simple inclusion using only the feature X
- Q_X is **not** definable without X

	Expressiveness	Conclusion
	00000	

Proving primitivity of equality

Equality

 Q_{eq} is the class of symmetric graphs: $\geq_1 r. \top \subseteq eq(r, r^-)$

Graph G

A complete directed graph with one edge removed

 $\mathsf{Graph}\ G'$

A complete directed graph

	0000	000000	
Proving primitivity of Graph G	of equality	Graph <i>G'</i>	
Lemma			
Lat H ha C an C/ E	an arram reath arr	munanian E	

Expressiveness

Let H be G or G'. For every path expression E, we have:

- $\llbracket E \rrbracket^H \supseteq \llbracket r \rrbracket^H$
- $\llbracket E \rrbracket^H \supseteq \llbracket r^- \rrbracket^H$
- $\llbracket E \rrbracket^H \supseteq V \times V$

	0000	00000	
Proving primit Grap	ivity of equality	Graph <i>G</i> ′	
	*••		
Proposition			

Expressiveness

For any shape ϕ not using eq: $\llbracket \phi \rrbracket^G = \llbracket \phi \rrbracket^{G'}$.

	luction	SHACL formalism 0000	Expressiveness 000●00	Conclusion O
Pr	oving primitivity of	disjointness		
	Disjointness			
	Q_{disj} is the class of gra	aphs where all nodes have	at least one symmetric edge:	
			\mathbf{C}	

 $\geq_1 r. \top \subseteq \neg disj(r, r^-)$

	Expressiveness	Conclusion
	000000	

Proving primitivity of disjointness

Disjointness

 Q_{disi} is the class of graphs where all nodes have at least one symmetric edge:

 $\geq_1 r. \top \subseteq \neg disj(r, r^-)$

An alternating cycle of cliques

A cycle of cliques

	Expressiveness 000000	Conclusion 0

Proving primitivity of zero-or-one paths

Zero-or-one paths

 $Q_{?}$ is the class of graphs where all nodes have at least three outgoing edges not to themselves:

 $\geq_1 r. \top \subseteq \geq_4 r?. \top$

	Expressiveness 000000	Conclusion 0

Proving primitivity of zero-or-one paths

Zero-or-one paths

 $Q_{?}$ is the class of graphs where all nodes have at least three outgoing edges not to themselves:

 $\geq_1 r. \top \subseteq \geq_4 r?. \top$

	Expressiveness	Conclusion
0000	000000	

Proving primitivity of closure

Closure

 Q_{closed} is the class of graphs where the only edge label allowed is r.

Proposition

Shapes without using closed do not distinguish between graphs that are equal on all edge labels mentioned in the shape.

	Expressiveness 000000	Conclusion

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in SHACL

	Expressiveness 000000	Conclusion ●

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in ${\rm SHACL}.$

Real SHACL has some hidden features:

- eq(id, p) which is expressible as $eq(p?, p) \land \ge_1 p. \top \land \le_1 p. \top$
- disj(id, p) which is expressible as ¬eq(p?, p)
- Is zero-or-one path still primitive?

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in ${\rm SHACL}.$

Real SHACL has some hidden features:

- eq(id, p) which is expressible as $eq(p?, p) \land \ge_1 p. \top \land \le_1 p. \top$
- disj(id, p) which is expressible as $\neg eq(p?, p)$
- Is zero-or-one path still primitive?

Natural extensions of the shape language:

- allow shapes of the form $eq(E_1, E_2)$ and $disj(E_1, E_2)$
- allow path expressions with *tests* (as in PDL)
- expressiveness under recursive semantics (stable model, well-founded)