
Introduction SHACL formalism Expressiveness Conclusion

Expressiveness of SHACL Features
ICDT 2021

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

Vrije Universiteit Brussel & Universiteit Hasselt

March 2022

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction SHACL formalism Expressiveness Conclusion

SHACL

• Shapes Constraint Language

• Constraint language for RDF graphs

• Conformance checking

:BookShape

a sh:PropertyShape;

sh:path :title;

sh:minCount 1.

:BookShape sh:targetClass :Book

≥1 type.Book ⊆ ≥1 title.>

fotr

“Fellowship of the Ring”
Book

tit
le

type

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction SHACL formalism Expressiveness Conclusion

SHACL

• Shapes Constraint Language

• Constraint language for RDF graphs

• Conformance checking

:BookShape

a sh:PropertyShape;

sh:path :title;

sh:minCount 1.

:BookShape sh:targetClass :Book

≥1 type.Book ⊆ ≥1 title.>

fotr

“Fellowship of the Ring”
Book

tit
le

type

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction SHACL formalism Expressiveness Conclusion

SHACL

• Shapes Constraint Language

• Constraint language for RDF graphs

• Conformance checking

:BookShape

a sh:PropertyShape;

sh:path :title;

sh:minCount 1.

:BookShape sh:targetClass :Book

≥1 type.Book ⊆ ≥1 title.>

fotr

“Fellowship of the Ring”
Book

ttt11.09

tit
le

type

ty
pe

price

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction SHACL formalism Expressiveness Conclusion

SHACL shapes
The language L

φ ::= > | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ∀E .φ | ≥n E .φ

E ::= p | p− | E ∪ E | E/E | E ∗

E are regular path queries with inverse

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

Introduction SHACL formalism Expressiveness Conclusion

SHACL shapes
The language L

φ ::= > | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ∀E .φ | ≥n E .φ

E ::= p | p− | E ∪ E | E/E | E ∗

E are regular path queries with inverse

An interpretation I :

• domain ∆I

• interprets node names

• interprets property names

φ I , a � φ if:

{c} a = JcKI

≥n E .ψ]{b ∈ JEKI (a) | I , b � ψ} ≥ n
∀E .ψ every b ∈ JEKI (a) must I , b � ψ

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

Introduction SHACL formalism Expressiveness Conclusion

SHACL shapes
The language L(eq, disj , closed , ?)

φ ::= > | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ∀E .φ | ≥n E .φ | eq(p,E) | disj(p,E) | closed(Q)

E ::= p | p− | E ∪ E | E/E | E ∗ | E?

E are regular path queries with inverse

Distinctive features:

• Equality

• Disjointness

• Closure

• Zero-or-one path

φ I , a � φ if:

{c} a = JcKI

≥n E .ψ]{b ∈ JEKI (a) | I , b � ψ} ≥ n
eq(E , p) the sets JEKI (a) and JpKI (a) are equal
disj(E , p) the sets JEKI (a) and JpKI (a) are disjoint
closed(R) JpKI (a) is empty for each p ∈ Σ− R

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

Introduction SHACL formalism Expressiveness Conclusion

SHACL shapes
The language L(eq, disj , closed , ?)

φ ::= > | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ∀E .φ | ≥n E .φ | eq(p,E) | disj(p,E) | closed(Q)

E ::= p | p− | E ∪ E | E/E | E ∗ | E?

E are regular path queries with inverse

Do we need these features in the language?

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Example shapes

“Through a path of friend edges, the node can reach node d ”

φ ≡ ≥1 friend∗.{d}

JφKG = {b, c , d}

“Nodes where the friendship is mutual”

φ ≡ eq(friend , friend−)

JφKG = {c, d}

“Nodes who have at least one colleague who is also a friend ”

φ ≡ ¬disj(friend , colleague)

JφKG = {b, c}

a

b

c d

friend
colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

Introduction SHACL formalism Expressiveness Conclusion

Graphs and interpretations

• A graph is a finite set of facts

• A fact is of the form p(a, b) with p a property name and a, b nodes from the graph

We associate to any given graph an interpretation I :

• The domain is the universe of all nodes

• Every constant is interpreted as itself

• The interpretation of a property name is fixed by the facts

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 4

Introduction SHACL formalism Expressiveness Conclusion

Shape schemas

A shape schema is a set of inclusion statements

φt ⊆ φs

A shape schema defines a class of graphs.

Example: the class of symmetric graphs.

≥1 r .> ⊆ eq(r , r−)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 5

Introduction SHACL formalism Expressiveness Conclusion

Shape schemas

A shape schema is a set of inclusion statements

φt ⊆ φs

A shape schema defines a class of graphs.

Example: the class of symmetric graphs.

≥1 r .> ⊆ eq(r , r−)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 5

Introduction SHACL formalism Expressiveness Conclusion

Main result: primitivity of the features

For each feature X ∈ {eq, disj , closed , ?} we define a class of graphs QX such that:

• QX is definable by a simple inclusion using only the feature X

• QX is not definable without X

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 6

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of equality

Equality

Qeq is the class of symmetric graphs: ≥1 r .> ⊆ eq(r , r−)

Graph G

✖	

A complete directed graph

with one edge removed

Graph G ′

A complete directed graph

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 7

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of equality
Graph G

✖	

Graph G ′

Lemma

Let H be G or G ′. For every path expression E , we have:

• JEKH ⊇ JrKH

• JEKH ⊇ Jr−KH

• JEKH ⊇ V × V

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 8

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of equality
Graph G

✖	

Graph G ′

Proposition

For any shape φ not using eq: JφKG = JφKG ′
.

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 8

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of disjointness

Disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

≥1 r .> ⊆ ¬disj(r , r−)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 9

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of disjointness

Disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

≥1 r .> ⊆ ¬disj(r , r−)

Graph G

An alternating cycle of cliques

Graph G ′

A cycle of cliques
Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 9

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of zero-or-one paths

Zero-or-one paths

Q? is the class of graphs where all nodes have at least three outgoing edges not to
themselves:

≥1 r .> ⊆ ≥4 r?.>

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 10

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of zero-or-one paths

Zero-or-one paths

Q? is the class of graphs where all nodes have at least three outgoing edges not to
themselves:

≥1 r .> ⊆ ≥4 r?.>

Graph G Graph G ′

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 10

Introduction SHACL formalism Expressiveness Conclusion

Proving primitivity of closure

Closure

Qclosed is the class of graphs where the only edge label allowed is r .

Proposition

Shapes without using closed do not distinguish between graphs that are equal on all
edge labels mentioned in the shape.

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 11

Introduction SHACL formalism Expressiveness Conclusion

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Real SHACL has some hidden features:

• eq(id , p) which is expressible as eq(p?, p) ∧ ≥1 p.>∧ ≤1 p.>
• disj(id , p) which is expressible as ¬eq(p?, p)

• Is zero-or-one path still primitive?

Natural extensions of the shape language:

• allow shapes of the form eq(E1,E2) and disj(E1,E2)

• allow path expressions with tests (as in PDL)

• expressiveness under recursive semantics (stable model, well-founded)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

Introduction SHACL formalism Expressiveness Conclusion

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Real SHACL has some hidden features:

• eq(id , p) which is expressible as eq(p?, p) ∧ ≥1 p.>∧ ≤1 p.>
• disj(id , p) which is expressible as ¬eq(p?, p)

• Is zero-or-one path still primitive?

Natural extensions of the shape language:

• allow shapes of the form eq(E1,E2) and disj(E1,E2)

• allow path expressions with tests (as in PDL)

• expressiveness under recursive semantics (stable model, well-founded)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

Introduction SHACL formalism Expressiveness Conclusion

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Real SHACL has some hidden features:

• eq(id , p) which is expressible as eq(p?, p) ∧ ≥1 p.>∧ ≤1 p.>
• disj(id , p) which is expressible as ¬eq(p?, p)

• Is zero-or-one path still primitive?

Natural extensions of the shape language:

• allow shapes of the form eq(E1,E2) and disj(E1,E2)

• allow path expressions with tests (as in PDL)

• expressiveness under recursive semantics (stable model, well-founded)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

	Introduction
	SHACL formalism
	Expressiveness
	Conclusion

