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Introduction
°

SHACL

® Shapes Constraint Language

® Constraint language for RDF graphs

® Conformance checking fotr

¥

W

Book
“Fellowship of the Ring”
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SHACL formalism
@000

SHACL shapes
The language £

pu=TI[{ct|oNP|dVP|—¢|VES|>,E.0
E:=p|p |EUE|EJ/E|E*

E are regular path queries with inverse
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SHACL shapes
The language £

pu=TI[{ct|oNP|dVP|—¢|VES|>,E.0
E:=p|p |EUE|EJ/E|E*

E are regular path queries with inverse

o l,akE ¢ if:
An interpretation /: (c) a=[c]’
. I o
e domain A > Ea t{be[E]'(a)|I,bEY}>n
® interprets node names VE .4 every b € [E]!(a) must I, b v

® interprets property names
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SHACL formalism
@000

SHACL shapes
The language L(eq, disj, closed, ?)

$u=T|{c} | 9AG |6V S| ~¢|VE.$|>,E.0|eqlp,E) | disi(p. E) | closed(Q)
E:=p|p |EUE|E/E|E*|E?

E are regular path queries with inverse

Distinctive features: ¢ l,aF ¢ if:

® Equality {c} a=[c]’ /

® Disjointness >nEY Hbe[E](a) [ 1,bFE Y} >n

e Closure eq(E,p)  the sets [E]/(a) and [p]'(a) are equal
disj(E,p) the sets [E]'(a) and [p]'(a) are disjoint

® Zero-or-one path closed(R) [p]'(a) is empty for each p € ¥ — R
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SHACL formalism
@000

SHACL shapes
The language L(eq, disj, closed, ?)

pu=TI|{ct ¢NS|PVS|~¢|VED|2,E.¢]|eq(p.E)|disj(p,E) | closed(Q)
E:=p|p |EUE|E/E|E*|E?

E are regular path queries with inverse

|
Do we need these features in the language?
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SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d}

—> friend
—> colleague
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SHACL formalism
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Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[61¢ = {b.c.d} .
)
L\
© D

—> friend
—> colleague
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SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

—> friend
—> colleague
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SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

[41¢ = {c.d}
“Nodes who have at least one colleague who is also a friend " > friend
¢ = —disj(friend, colleague) —> colleague
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SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

[41¢ = {c.d}
“Nodes who have at least one colleague who is also a friend " > friend
¢ = —disj(friend, colleague) —> colleague

[¢1¢ = {b,c}
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SHACL formalism
[e]e] e}

Graphs and interpretations

® A graph is a finite set of facts
® A fact is of the form p(a, b) with p a property name and a, b nodes from the graph

We associate to any given graph an interpretation /:
® The domain is the universe of all nodes
® Every constant is interpreted as itself

® The interpretation of a property name is fixed by the facts
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SHACL formalism
[e]ele] ]

Shape schemas

A shape schema is a set of inclusion statements

¢>t§¢s

A shape schema defines a class of graphs.
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SHACL formalism
[e]ele] ]

Shape schemas

A shape schema is a set of inclusion statements

¢>t§¢s

A shape schema defines a class of graphs.

Example: the class of symmetric graphs.

> r. T Ceq(r,r7)
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Expressiveness
©00000

Main result: primitivity of the features

For each feature X € {eq, disj, closed,?} we define a class of graphs Qx such that:
® (Qx is definable by a simple inclusion using only the feature X
® (Qx is not definable without X
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Expressiveness
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Proving primitivity of equality

Equality

Qeq is the class of symmetric graphs: >1r. T C eq(r,r™)

Graph G Graph G’

A complete directed graph A complete directed graph
with one edge removed
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Proving primitivity of equality
Graph G Graph G’

Lemma

Let H be G or G’'. For every path expression E, we have:
* [E]7 2 []"
 [E]" 2 [r ]
e [E]f DV xV
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Proving primitivity of equality
Graph G Graph G’

Proposition

For any shape ¢ not using eq: [¢]¢ = [¢]¢ .
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Expressiveness
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Proving primitivity of disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

P

>y r. T C —disj(r,r™)
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Proving primitivity of disjointness

Disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

>y r. T C —disj(r,r™)

Graph G Graph G’

An alternating cycle of cliques A cycle of cliques
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Introduction SHACL formalism Expressiveness
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Proving primitivity of zero-or-one paths

Zero-or-one paths

Q- is the class of graphs where all nodes have at least three outgoing edges not to
themselves:

21 r. T Q 24r?."|—
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Proving primitivity of zero-or-one paths

Zero-or-one paths

Q- is the class of graphs where all nodes have at least three outgoing edges not to
themselves:
21 r. T g 24 r?. T

Graph G Graph G’
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Expressiveness
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Proving primitivity of closure

Closure

Qclosed is the class of graphs where the only edge label allowed is r.

Shapes without using closed do not distinguish between graphs that are equal on all
edge labels mentioned in the shape.
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Conclusion
°

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.
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Conclusion & Future Work
We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.
Real SHACL has some hidden features:
® eq(id, p) which is expressible as eq(p?, p) A >1p. TA <1 p. T
® disj(id, p) which is expressible as —eq(p?, p)
® |s zero-or-one path still primitive?
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Conclusion
°

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Real SHACL has some hidden features:
® eq(id, p) which is expressible as eq(p?, p) A >1p. TA <1 p. T
® disj(id, p) which is expressible as —eq(p?, p)
® |s zero-or-one path still primitive?

Natural extensions of the shape language:

® allow shapes of the form eq(E1, Ez) and disj(Ei, Ez)
® allow path expressions with tests (as in PDL)

® expressiveness under recursive semantics (stable model, well-founded)
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