Introduction
°

Expressiveness of SHACL Features
ICDT 2021

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

Vrije Universiteit Brussel & Universiteit Hasselt

March 2022

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction
°

SHACL

® Shapes Constraint Language

® Constraint language for RDF graphs

® Conformance checking fotr

¥

W

Book
“Fellowship of the Ring”

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction
°

SHACL

® Shapes Constraint Language
® Constraint language for RDF graphs

e Conformance checking fotr)
’&'\x’\e J’/Oe
:BookShape
a sh:PropertyShape; .) . Book
sh:path :title; Fellowship of the Ring

sh:minCount 1.

:BookShape sh:targetClass :Book

>4 type.Book C > title. T

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

Introduction
°

SHACL

® Shapes Constraint Language
® Constraint language for RDF graphs

e Conformance checking fotr)
a0 Lo
:BookShape
a sh:PropertyShape; .] o Book
sh:path :title; Fellowship of the Ring &
)

sh:minCount 1.

:BookShape sh:targetClass :Book 11.09 ttt

>4 type.Book C > title. T

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 1

SHACL formalism
@000

SHACL shapes
The language £

pu=TI[{ct|oNP|dVP|—¢|VES|>,E.0
E:=p|p |EUE|EJ/E|E*

E are regular path queries with inverse

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

SHACL formalism
@000

SHACL shapes
The language £

pu=TI[{ct|oNP|dVP|—¢|VES|>,E.0
E:=p|p |EUE|EJ/E|E*

E are regular path queries with inverse

o l,akE ¢ if:
An interpretation /: (c) a=[c]’
. I o
e domain A > Ea t{be[E]'(a)|I,bEY}>n
® interprets node names VE .4 every b € [E]!(a) must I, b v

® interprets property names

Expressiveness of SHACL Features

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

SHACL formalism
@000

SHACL shapes
The language L(eq, disj, closed, ?)

$u=T|{c} | 9AG |6V S| ~¢|VE.$|>,E.0|eqlp,E) | disi(p. E) | closed(Q)
E:=p|p |EUE|E/E|E*|E?

E are regular path queries with inverse

Distinctive features: ¢ l,aF ¢ if:

® Equality {c} a=[c]’ /

® Disjointness >nEY Hbe[E](a) [1,bFE Y} >n

e Closure eq(E,p) the sets [E]/(a) and [p]'(a) are equal
disj(E,p) the sets [E]'(a) and [p]'(a) are disjoint

® Zero-or-one path closed(R) [p]'(a) is empty for each p € ¥ — R

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

SHACL formalism
@000

SHACL shapes
The language L(eq, disj, closed, ?)

pu=TI|{ct ¢NS|PVS|~¢|VED|2,E.¢]|eq(p.E)|disj(p,E) | closed(Q)
E:=p|p |EUE|E/E|E*|E?

E are regular path queries with inverse

|
Do we need these features in the language?

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 2

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d}

—> friend
—> colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[61¢ = {b.c.d} .
)
L\
© D

—> friend
—> colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

—> friend
—> colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
[¢1° = {c.d} © W

—> friend
—> colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

[41¢ = {c.d}
“Nodes who have at least one colleague who is also a friend " > friend
¢ = —disj(friend, colleague) —> colleague

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[o] le]e}

Example shapes

“Through a path of friend edges, the node can reach node d”
¢ = > friend” . {d} @)

[[d)]]c :{b,C,d} .

“Nodes where the friendship is mutual” ®)
¢ = eq(friend, friend ™) / \
© D

[41¢ = {c.d}
“Nodes who have at least one colleague who is also a friend " > friend
¢ = —disj(friend, colleague) —> colleague

[¢1¢ = {b,c}

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 3

SHACL formalism
[e]e] e}

Graphs and interpretations

® A graph is a finite set of facts
® A fact is of the form p(a, b) with p a property name and a, b nodes from the graph

We associate to any given graph an interpretation /:
® The domain is the universe of all nodes
® Every constant is interpreted as itself

® The interpretation of a property name is fixed by the facts

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 4

SHACL formalism
[e]ele]]

Shape schemas

A shape schema is a set of inclusion statements

¢>t§¢s

A shape schema defines a class of graphs.

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 5

SHACL formalism
[e]ele]]

Shape schemas

A shape schema is a set of inclusion statements

¢>t§¢s

A shape schema defines a class of graphs.

Example: the class of symmetric graphs.

> r. T Ceq(r,r7)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 5

Expressiveness
©00000

Main result: primitivity of the features

For each feature X € {eq, disj, closed,?} we define a class of graphs Qx such that:
® (Qx is definable by a simple inclusion using only the feature X
® (Qx is not definable without X

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 6

Expressiveness
0®0000

Proving primitivity of equality

Equality

Qeq is the class of symmetric graphs: >1r. T C eq(r,r™)

Graph G Graph G’

A complete directed graph A complete directed graph
with one edge removed

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 7

Expressiveness
00000

Proving primitivity of equality
Graph G Graph G’

Lemma

Let H be G or G’'. For every path expression E, we have:
* [E]7 2 []"
 [E]" 2 [r]
e [E]f DV xV

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 8

Expressiveness
00000

Proving primitivity of equality
Graph G Graph G’

Proposition

For any shape ¢ not using eq: [¢]¢ = [¢]¢ .

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 8

Expressiveness
00000

Proving primitivity of disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

P

>y r. T C —disj(r,r™)

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 9

Expressiveness
00000

Proving primitivity of disjointness

Disjointness

Qdisj is the class of graphs where all nodes have at least one symmetric edge:

>y r. T C —disj(r,r™)

Graph G Graph G’

An alternating cycle of cliques A cycle of cliques

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 9

Introduction SHACL formalism Expressiveness

000080

Proving primitivity of zero-or-one paths

Zero-or-one paths

Q- is the class of graphs where all nodes have at least three outgoing edges not to
themselves:

21 r. T Q 24r?."|—

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 10

Expressiveness
000000

Proving primitivity of zero-or-one paths

Zero-or-one paths

Q- is the class of graphs where all nodes have at least three outgoing edges not to
themselves:
21 r. T g 24 r?. T

Graph G Graph G’

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 10

Expressiveness
00000®

Proving primitivity of closure

Closure

Qclosed is the class of graphs where the only edge label allowed is r.

Shapes without using closed do not distinguish between graphs that are equal on all
edge labels mentioned in the shape.

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 11

Conclusion
°

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

Conclusion
°

Conclusion & Future Work
We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.
Real SHACL has some hidden features:
® eq(id, p) which is expressible as eq(p?, p) A >1p. TA <1 p. T
® disj(id, p) which is expressible as —eq(p?, p)
® |s zero-or-one path still primitive?

Expressiveness of SHACL Features Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

Conclusion
°

Conclusion & Future Work

We established the primitivity of equality, disjointness, zero-or-one paths and closure in
SHACL.

Real SHACL has some hidden features:
® eq(id, p) which is expressible as eq(p?, p) A >1p. TA <1 p. T
® disj(id, p) which is expressible as —eq(p?, p)
® |s zero-or-one path still primitive?

Natural extensions of the shape language:

® allow shapes of the form eq(E1, Ez) and disj(Ei, Ez)
® allow path expressions with tests (as in PDL)

® expressiveness under recursive semantics (stable model, well-founded)

Expressiveness of SHACL Features

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche 12

	Introduction
	SHACL formalism
	Expressiveness
	Conclusion

