# SHACL: A Description Logic in Disguise **BNAIC 2021**

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

Vrije Universiteit Brussel & Universiteit Hasselt

November 2021

## Semantic Web & Linked Data



- Enormous datasets
- Data quality: constraints
- Shapes Constraint Language (SHACL)

#### **OWL**

- Description Logic SROIQ
- Modeling knowledge
- Deductive reasoning
- Example:

"Every book has a title"

```
Ontology(:BookOntology
  SubClassOf(
    v: Book
    ObjectMinCardinality(1
      v:title
      owl:Thing)))
```

#### **OWL**

- Description Logic SROIQ
- Modeling knowledge
- Deductive reasoning
- Example:

"Every book has a title"

```
Ontology(:BookOntology
  SubClassOf(
    v: Book
    ObjectMinCardinality(1
      v·title
      owl:Thing)))
```

#### SHACL

- [Corman 2018]
- Modeling constraints
- Validation
- Example: "Every book has a title"

```
:BookShape
 a sh:PropertyShape:
 sh:path v:title;
 sh · minCount 1
```

:BookShape sh:targetClass v:Book.

## The Wedge

- 1 Both SHACL and OWL are used for modeling tasks
- 2 OWL has its *logical foundations* in Description Logic
- **3** SHACL has its *logical foundations* in ??
- The languages are very similar at their core

"OWL was inspired by and designed to exploit 20+ years of research in Description Logics (DL). [...] there is little connection between this research and the practical data modeling needs of the common real world software systems."

# The Wedge

Introduction 000

- **1** Both SHACL and OWL are used for *modeling tasks*
- **2** OWL has its *logical foundations* in Description Logic
- **3** SHACL has its *logical foundations* in **Description Logic as well!**
- 4 The languages are very similar at their core

"OWL was inspired by and designed to exploit 20+ years of research in Description Logics (DL). [...] there is little connection between this research and the practical data modeling needs of the common real world software systems."

#### SHACL

#### Shape expressions

$$E ::= p \mid p^- \mid E \cup E \mid E/E \mid E^* \mid E?$$

$$\phi ::= \top \mid s \mid \{c\} \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \forall E.\phi \mid \geq_n E.\phi \mid eq(p, E) \mid disj(p, E) \mid closed(Q)$$

#### Schema

- Shape definitions:  $s \leftarrow \phi$
- Target inclusions:  $\phi \subseteq s$

#### Validation

- ullet Given an RDF graph G and a shape schema  ${\mathcal S}$
- Does G conform to S?



 $BNAICAuthor \leftarrow \exists author / venue. \{BNAIC2021\}$ 



 $BNAICAuthor \leftarrow \exists author / venue. \{BNAIC2021\}$ 

 $\exists presentsAt. \{BNAIC2021\} \subset BNAICAuthor$ 



 $BNAICAuthor \leftarrow \exists author / venue. \{BNAIC2021\}$  $NotBNAICAuthor \leftarrow \neg BNAICAuthor$ 

 $\exists presentsAt. \{BNAIC2021\} \subset BNAICAuthor$ 



 $BNAICAuthor \leftarrow \exists author / venue. \{BNAIC2021\}$  $NotBNAICAuthor \leftarrow \neg BNAICAuthor$ 

 $\exists presentsAt. \{BNAIC2021\} \subset BNAICAuthor$  $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 

# Description Logics

#### Ontology / Knowledge Base

- Terminology (TBox): what are the concepts and their relations?
- Assertions (ABox): what is the known information?

## Description Logics

#### Ontology / Knowledge Base

- Terminology (TBox): what are the concepts and their relations?
- Assertions (ABox): what is the known information?
- Example:

```
TBox:
```

 $Author \sqsubseteq Human \sqcap \exists hasWritten . Publication$ 

ABox:

Author: tolkien

hasWritten: (tolkien, fotr)

# SHACL as a Description Logic

- TBox is a finite set of shape inclusions, given by the shape schema
  - Definitions: :BookShape  $\equiv \exists$ :title.  $\top$
  - Targeting:  $\exists$ :writtenBy. $\top \sqsubseteq$ :BookShape
- There is no ABox

SHACL as a Description Logic

0000

# SHACL as a Description Logic

- TBox is a finite set of shape inclusions, given by the shape schema
  - Definitions: :BookShape  $\equiv \exists$ :title.  $\top$
  - Targeting:  $\exists$ :writtenBy. $\top \sqsubseteq$ :BookShape
- There is no ABox
- ... but what then does the RDF graph represent?

SHACL as a Description Logic

# What's in an RDF graph?

- A graph is a finite set of facts
- A fact is of the form p(a, b) with p a property name and a, b nodes of G.

We associate to any given graph an interpretation I:

- The domain is the universe of all nodes
- Every constant is interpreted as itself
- The interpretation of a property name is fixed by the facts

SHACL as a Description Logic

0000



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$ 

SHACL as a Description Logic

0000

 $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$ 

SHACL as a Description Logic

0000

 $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$  $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 

SHACL as a Description Logic

0000

NotBNAICAuthor evaluates to N − {Bart, Me}





 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$  $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 

SHACL as a Description Logic

0000

 NotBNAICAuthor evaluates to N − {Bart, Me}  $\dots$  because the domain is the universe of all nodes (N)



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$  $\{LuisLeiva\} \subseteq NotBNAICAuthor$ 

SHACL as a Description Logic

0000

- NotBNAICAuthor evaluates to N − {Bart, Me} ... because the domain is the universe of all nodes (N)
- {LuisLeiva} evaluates to {LuisLeiva}



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$  $\{LuisLeiva\} \subset NotBNAICAuthor$ 

SHACL as a Description Logic

0000

- NotBNAICAuthor evaluates to N − {Bart, Me} ... because the domain is the universe of all nodes (N)
- {LuisLeiva} evaluates to {LuisLeiva} ... because all constants are interpreted as themselves



 $NotBNAICAuthor \leftarrow \neg \exists author / venue. \{BNAIC2021\}$  $\{LuisLeiva\} \subset NotBNAICAuthor$ 

SHACL as a Description Logic

- NotBNAICAuthor evaluates to N − {Bart, Me} ... because the domain is the universe of all nodes (N)
- {LuisLeiva} evaluates to {LuisLeiva} ... because all constants are interpreted as themselves

This is also the behavior of **real** SHACL!

## SHACL is a Description Logic

- It is of value to put emphasis on the formalization of SHACL
  - What does the RDF graph represent?
  - What are the exact semantics of the language?
- The discrepancy between the views on modeling can be summarized as:
  - In OWL, the graph is a first order-theory (ABox) and the task is deduction
  - In SHACL, the graph is a first order-interpretation and task is model checking
- We can exploit many years of research in Description Logics, e.g.,

#### Theorem

Consistency of a shape schema is undecidable.