Fixpoint Semantics for
Recursive SHACL

Presented at ICLP 2021

Bart Bogaerts &
Maxime Jakubowski

SHACL

* Shapes Constraint Language
* Constraint language for RDF graphs
* Conformance checking

:BookShape
a sh:PropertyShape;
sh:path :title;
sh:minCount 1.

:BookShape sh:targetClass :Book.

Jtype. hasValue(Book) C Ftitle. T

“Fellowship of the Ring"

Shapes

Let N, P and S be disjoint universes of node names, property names and shape
names.

The language L

¢ := T | hasValue(c) | hasShape(s) | eq(E,p) | disj(E,p) | closed(Q)
oA | PV P | |IVE.P| 2, E.p| <,E.¢P
E:=plp |[EUE|EJ/E|E*|E?

wherece N,p€eP,se€SandQ € P

E areregular path expressions

We will use the symbol 3 to abbreviate >4

Interpretations for shapes

... have the following components:
* An (infinite) domain: Al
 For each constant c, an element ¢! € Al
* For each shape name s, asets! € Al

* For each property name p, asetp! € Al xA! () I,akE ¢if:

hasValue(a) a = [c]’

An RDF graph G is a specific interpretation where:
« Al = N (the universe of all nodes)
« ¢! = cforeverynodenamec € N

« pl = pC, for every property namep € P

> E.Y #{be [E]'(@)|,bEyY}=n

eq(F,p) The sets [F]'(a) and [[p]'(a) are
equal

disj(F,p) Thesets [F]'(a) and [p]’(a) are
disjoint

closed(R) [p]'(a)is empty for eachp € £ — R

Example shapes

* “Through a path of edges, the node can reach node d”
* FriendOfD « 3Ffriend”. hasValue(d) @
* b, c, and d satisfy FriendOfD in G (

* “Nodes where ship is mutual” » @
* MutualFriends < eq(friend, friend™) |
* c and d satisfy MutualFriends in G

© @

»

* “Nodes who have at least one who is also a
 ColleagueFriend < —disj(friend, colleague) friend
* b and c satisfy ColleagueFriend in G colleague

Shape schemas

The main task is to check whether a graph conforms to some constraints, not
single nodes.

Shape definition: S ¢ @

Target statement: ¢ S P

®

Example schema (Def, T):

* Def: FriendOfD « 3friend”. hasValue(d) @ @

e T: Jfriend. T € FriendOfD

friend
colleague

Recursion

Given an interpretation (associated with a graph) G, and a schema (Def, T)

= AFT as a tool to define our recursive semantics

Two-valued lattice L:

 the set of interpretations that expand G (N and P are fixed, so they expand S)
e truthorderl; <; L, ifs't c s®2foralls € S
» semantic operator: Tper(I)(s) ::= ¢! for each defining rule s « ¢ € Def

Three-valued lattice L¢:

* the set of pairs of interpretations | = (J1,/,) suchthatJ; <; />
* three-valued interpretations associate with every s € Sa mapping A — {¢t, f, u}:

« amapstotifains/ttofifanotins’/z,and tou otherwise
» we extend this evaluations to shapes ¢ (straightforward extension of Kleene’s truth tables)

* semantic operator: ®p.¢(J)(s) ::= ¢/

Is that all?

We only needed to:

 Choose an order on our two-valued lattice

e Define the three-valued evaluation

We get:
* Well defined semantics for recursive SHACL

* Theorethical body of results coming from AFT, now applicable to SHACL

Brave vs Cautious validation

There may be multiple (expanded) models for a given graph G and
schema (Def, T).

* Brave validation: one such model must satisfy T

» Cautious validation: every model must satisfy T

.. makes a difference for stable and supported model semantics

Existing Semantics

[Corman 2018] defined supported model semantics (CRS-supported)

* Already defined the three-valued semantic operator ®p, ¢

» ...but only characterized supported models for (brave) validation

CRS-supported models coincide with the AFT-supported models

=> we agree with the literature

Existing Semantics

[Andresel 2020] defined stable model semantics (ACORSS-stable)
* Defined in terms of ‘level-mappings’

* Focus on translation to ASP
LL Il Every AFT-stable model is a ACORSS-stable model. If Defis in
negation normal form, the converse also holds.

... Where does it go wrong?

ACORSS-stable + AFT-stable

“You are safe if you are vaccinated or you are close to at most
one person who is not safe.” vaccinated

OO

Safe « Jvaccinated. T V <;closeTo. —hasShape(Safe)

@ ®

AFT-stable has only one model: { Safe(a), Safe(b), Safe(c) } symptoms
N O

ACORSS-stable has an additional model where everyone is safe.

© ®

=> AFT gives us a more intuitive semantics here closeTo

Concluding remarks

* Our semantics often agrees with the proposed semantics from the literature

* Where the semantics differ, we argue our semantics is more intuitive

* The application of AFT in this context was natural

* We define new recursive semantics for SHACL (like the well-founded semantics)

* We supply a strong formal foundation for the study of recursive SHACL

